题目内容
【题目】已知,函数.
(1)当时,解不等式;
(2)若关于的方程的解集中恰有一个元素,求的值;
(3)设,若对任意,函数在区间上的最大值与最小值的差不超过1,求的取值范围.
【答案】(1);(2)或;(3).
【解析】试题分析:(1)利用已知条件,将代入,解不等式,求出的取值范围;(2)首先分情况进行讨论,利用仅有一解,即和的两种情况进行讨论;(3)利用函数的单调性,最大值和最小值,将不等式进行转换和化简从而求出的取值范围.
试题解析:(1)由得解得
(2)方程的解集中恰有一个元素.
等价于仅有一解,
等价于仅有一解,
当时,,符合题意;
当时,,解得
综上:或
(3)当时,,,
所以在上单调递减.
函数在区间上的最大值与最小值分别为,.
即,对任意成立.
因为,所以函数在区间上单调递增,
所以时,有最小值,由,得.
故的取值范围为.
练习册系列答案
相关题目
【题目】近年来空气质量逐步恶化,雾霾天气现象增多,大气污染危害加重.大气污染可引起心悸、呼吸困难等心肺疾病.为了解心肺疾病是否与性别有关,在市第一人民医院随机对入院50人进行了问卷调查,得到了如表的列联表:
患心肺疾病 | 不患心肺疾病 | 合计 | |
男 | 5 | ||
女 | 10 | ||
合计 | 50 |
已知在全部50人中随机抽取1人,抽到患心肺疾病的人的概率为.
(1)请将上面的列联表补充完整;
(2)是否有99%的把握认为患心肺疾病与性别有关?说明你的理由.
参考格式: ,其中.
下面的临界值仅供参考:
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |