题目内容
【题目】定义在上的函数满足.当时,,当时,,则f(1)+f(2)+…+f(2015)=( )
A. 333 B. 336 C. 1678 D. 2015
【答案】B
【解析】分析:由已知得到函数的周期为6,找到与2015函数值相等的(-3,3)的自变量,按照周期求值.
详解:由已知函数周期为6,并且2015=6×335+5,
并且f(1)=1,
f(2)=2,
f(3)=f(-3+6)=f(-3)=-(-3+2)2=-1,
f(4)=f(-2+6)=f(-2)=0,
f(5)=f(-1+6)=f(-1)=-1,
f(6)=f(0)=0,
所以f(1)+f(2)+…+f(6)=1,
所以f(1)+f(2)+…+f(2015)=1×335+f(1)+f(2)+f(3)+f(4)+f(5)=335+1=336;
故选:B.
练习册系列答案
相关题目
【题目】通过随机询问110名性别不同的中学生是否爱好运动,得到如下的列联表:
男 | 女 | 总计 | |
爱好 | 40 | 20 | 60 |
不爱好 | 20 | 30 | 50 |
总计 | 60 | 50 | 110 |
由得,
0.050 | 0.010 | 0.001 | |
3.841 | 6.635 | 10.828 |
参照附表,得到的正确结论是 ( )
A. 在犯错误的概率不超过0.001的前提下,认为“爱好运动与性别有关”
B. 在犯错误的概率不超过0.01的前提下,认为 “爱好运动与性别有关”
C. 在犯错误的概率不超过0.001的前提下,认为“爱好运动与性别无关”
D. 有以上的把握认为“爱好运动与性别无关”