题目内容

【题目】国家射击队的某队员射击一次,命中7~10环的概率如表所示:

命中环数

10环

9环

8环

7环

概率

0.32

0.28

0.18

0.12

求该射击队员射击一次 求:

(1)射中9环或10环的概率;

(2)至少命中8环的概率;(3)命中不足8环的概率。

【答案】(1)0.6;(2)0.78;(3)0.22.

【解析】分析:(1)根据互斥事件概率加法得结果,(2)根据互斥事件概率加法得结果,(3)根据对立事件概率关系求结果.

详解:

记事件“射击一次,命中k环”为Ak(k∈N,k≤10),则事件Ak彼此互斥。

(1)记“射击一次,射中9环或10环”为事件A,那么当A9,A10之一发生时,事件A发生,由互斥事件的加法公式得

P(A)=P(A9)+P(A10)=0.32+0.28=0.60

(2)设“射击一次,至少命中8环”的事件为B,那么当A8,A9,A10之一发生时,事件B发生.由互斥事件概率的加法公式得

P(B)=P(A8)+P(A9)+P(A10)=0.18+0.28+0.32=0.78

(3)由于事件“射击一次,命中不足8环”是事件B:“射击一次,至少命中8环”的对立事件:即表示事件“射击一次,命中不足8环”,根据对立事件的概率公式得

P()=1-P(B)=1-0.78=0.22

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网