ÌâÄ¿ÄÚÈÝ
1£®ÒÑÖªÏÂÁÐËĸöÃüÌ⣺£¨1£©Èôax2-ax+1£¾0ÔÚx¡ÊRÉϺã³ÉÁ¢£¬Ôò0£¼a£¼4£»
£¨2£©Èñ½ÇÈý½ÇÐΡ÷ABCÖУ¬A=$\frac{¦Ð}{3}$£¬Ôò$\frac{1}{2}$£¼sinB£¼1£»
£¨3£©ÒÑÖªk¡ÊR£¬Ö±Ïßy-kx-1=0ÓëÍÖÔ²$\frac{x^2}{5}+\frac{y^2}{m}=1£¨{m£¾0}£©$ºãÓй«¹²µã£¬Ôòm¡Ê[1£¬5£©£»
£¨4£©¶¨ÒåÔÚRÉϵĺ¯Êýf£¨x£©Âú×ãf£¨x+y£©=f£¨x£©+f£¨y£©£¬µ±x?0ʱ£¬f£¨x£©£¾0£¬Ôòº¯Êýf£¨x£©ÔÚ[a£¬b]ÉÏÓÐ×îСֵf£¨b£©£®
ÆäÖеÄÕæÃüÌâÊÇ£¨2£©£¨4£©£®
·ÖÎö Çó³öʹax2-ax+1£¾0ÔÚx¡ÊRÉϺã³ÉÁ¢µÄaµÄ·¶Î§£¬¿ÉÅжϣ¨1£©£»¸ù¾ÝÈñ½ÇÈý½ÇÐΡ÷ABCÖУ¬A=$\frac{¦Ð}{3}$£¬Çó³öBµÄ·¶Î§£¬ÔÙÓÉÕýÏÒº¯ÊýµÄͼÏóºÍÐÔÖÊ£¬¿ÉÅжϣ¨2£©£»Ö±Ïßy-kx-1=0ºã¹ý£¨0£¬1£©µã£¬¸ù¾ÝÌâÒâ¿ÉµÃ£¨0£¬1£©ÔÚÍÖÔ²ÉÏ£¬»òÔÚÍÖÔ²ÄÚ£¬½ø¶øÇó³ömµÄ·¶Î§£¬¿ÉÅжϣ¨3£©£» ¸ù¾ÝÌâÒâµÃµ½f£¨x£©=kx£¬£¨k£¼0£©£¬½ø¶ø½áºÏÕý±ÈÀýº¯ÊýµÄͼÏóºÍÐÔÖÊ£¬¿ÉÅжϣ¨4£©£®
½â´ð ½â£º£¨1£©Èôa=0£¬Ôòax2-ax+1=1£¾0ÔÚx¡ÊRÉϺã³ÉÁ¢£¬
Èôa¡Ù0£¬ÔòÓÉax2-ax+1=1£¾0ÔÚx¡ÊRÉϺã³ÉÁ¢µÃ$\left\{\begin{array}{l}a£¾0\\¡÷={a}^{2}-4a£¼0\end{array}\right.$£¬½âµÃ0£¼a£¼4£»
¹ÊÈôax2-ax+1£¾0ÔÚx¡ÊRÉϺã³ÉÁ¢£¬Ôò0¡Üa£¼4£¬¹Ê£¨1£©´íÎó£»
£¨2£©Èñ½ÇÈý½ÇÐΡ÷ABCÖУ¬A=$\frac{¦Ð}{3}$£¬Ôò$\frac{¦Ð}{6}$£¼B£¼$\frac{¦Ð}{2}$£¬Ôò$\frac{1}{2}$£¼sinB£¼1£¬¹Ê£¨2£©ÕýÈ·£»
£¨3£©Ö±Ïßy-kx-1=0ºã¹ý£¨0£¬1£©µã£¬ÈôÖ±Ïßy-kx-1=0ÓëÍÖÔ²$\frac{x^2}{5}+\frac{y^2}{m}=1£¨{m£¾0}£©$ºãÓй«¹²µã£¬
Ôò£¨0£¬1£©ÔÚÍÖÔ²ÉÏ£¬»òÔÚÍÖÔ²ÄÚ£¬Ôòm¡Ê[1£¬5£©¡È£¨5£¬+¡Þ£©£¬¹Ê£¨3£©´íÎó£»
£¨4£©¶¨ÒåÔÚRÉϵĺ¯Êýf£¨x£©Âú×ãf£¨x+y£©=f£¨x£©+f£¨y£©£¬Ôòº¯ÊýΪÕý±ÈÀýÐͺ¯Êý£¬¼´y=kx£¬
Óɵ±x£¼0ʱ£¬f£¨x£©£¾0£¬¿ÉµÃk£¼0£¬¼´º¯ÊýΪ¼õº¯Êý£¬Ôòº¯Êýf£¨x£©ÔÚ[a£¬b]ÉÏÓÐ×îСֵf£¨b£©£¬¹Ê£¨4£©ÕýÈ·£®
¹ÊÕæÃüÌâµÄÐòºÅΪ£º£¨2£©£¨4£©£¬
¹Ê´ð°¸Îª£º£¨2£©£¨4£©
µãÆÀ ±¾Ì⿼²éµÄ֪ʶµãÊÇÃüÌâµÄÕæ¼ÙÅжÏÓëÓ¦Ó㬴ËÀàÌâÐÍÍùÍù×ۺϽ϶àµÄÆäËü֪ʶµã£¬×ÛºÏÐÔÇ¿£¬ÄѶÈÖеµ£®
¢ÙÉ輯ºÏ M={x|0£¼x¡Ü3}£¬N={x|0£¼x¡Ü2}£¬Ôò¡°a¡ÊM¡±ÊÇ¡°a¡ÊN¡±µÄ³ä·Ö²»±ØÒªÌõ¼þ
¢ÚÃüÌâ¡°Èôa¡ÊM£¬Ôòb∉M¡±µÄÄæ·ñÃüÌâÊÇ£º¡°Èôb¡ÊM£¬Ôòa∉M¡±
¢ÛÈôp¡ÅqÊÇÕæÃüÌ⣬Ôòp£¬q¶¼ÊÇÕæÃüÌâ
¢ÜÃüÌâp£º¡°?x0¡ÊR£¬x02-x0-1£¾0¡±µÄ·ñ¶¨?p£º¡°?x¡ÊR£¬x2-x-1¡Ü0¡±
ÔòÉÏÊöÃüÌâÖÐΪÕæÃüÌâµÄÊÇ£¨¡¡¡¡£©
A£® | ¢Ù¢Ú¢Û¢Ü | B£® | ¢Ú¢Ü | C£® | ¢Ù¢Û¢Ü | D£® | ¢Ú¢Û¢Ü |
A£® | {x|-2¡Üx¡Ü2} | B£® | {x|-2¡Üx£¼-1»ò-1£¼x£¼1»ò1£¼x¡Ü2} | ||
C£® | {x|x¡Ü2ÇÒx¡Ù¡À1} | D£® | {x|-2¡Üx£¼-1»ò1£¼x¡Ü2} |