题目内容

【题目】在直角坐标系中,曲线的参数方程为为参数,).以坐标原点为极点,轴正半轴为极轴建立极坐标系,已知直线的极坐标方程为

(1)设是曲线上的一个动点,若点到直线的距离的最大值为,求的值;

(2)若曲线上任意一点都满足,求的取值范围.

【答案】(1)8;(2)

【解析】

(1)将直线的极坐标方程化为直角坐标方程,根据题意得到点P到直线的距离的最大值为,求参即可;(2)画出曲线C和的图像,根据题意只要圆在直线上方即可,临界状态是圆和线相切,列不等式求解即可.

1)依题意得曲线的普通方程为

因为,所以,因为

因为直线的直角坐标方程为,即

所以圆心到直线的距离为

则依题意得,因为,解得

2)因为曲线上任意一点都满足,画出曲线C和的图像,根据题意只要圆在直线上方即可,临界状态是圆和线相切,圆心到直线的距离大于等于半径即可,所以

所以,解得

,所以的取值范围为

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网