题目内容
5.已知集合A={x|x2+4x=0},集合B={x|x2+2(a+1)x+a2-1=0},若A∪B=A,求a的值.分析 对B进行分类讨论:若B≠∅,则B⊆A;若B=∅,则△<0.由此能求出a的取值范围.
解答 解:∵集合A={x|x2+4x=0}={0,-4},
对B进行分类讨论:
(1)若B≠∅,则B⊆A,
设0∈B,则a2-1=0,解得:a=±1;
当a=-1时,B={0}符合题意;
当a=1时,B={0,-4}符合题意;
设-4∈B,则a=1或a=7,
当a=7时,B={-4,-12}不符合题意;
(2)若B=∅,则x2+2(a+1)x+a2-1=0,
此时△<0,得a<-1;
综上所述,a的取值范围是a≤-1或a=1.
点评 本题考查的知识点是集合的交,并,补集的混合运算,难度不大,属于基础题.
练习册系列答案
相关题目