题目内容

10.判断下列函数的奇偶性.
(1)f(x)=$\sqrt{{x}^{2}-1}$•$\sqrt{1{-x}^{2}}$
(2)f(x)=log2(x+$\sqrt{{x}^{2}+1}$)(x∈R)

分析 根据函数奇偶性的定义进行判断.

解答 解:①由$\left\{\begin{array}{l}{1-{x}^{2}≥0}\\{{x}^{2}-1≥0}\end{array}\right.$得$\left\{\begin{array}{l}{{x}^{2}≤1}\\{{x}^{2}≥1}\end{array}\right.$,即x2=1,解得x=1或x=-1,即定义域为{-1,1},
此时f(x)=$\sqrt{1-{x}^{2}}$+$\sqrt{{x}^{2}-1}$=0,则函数既是奇函数也是偶函数;
②f(x)+f(-x)=log2(x+$\sqrt{{x}^{2}+1}$)+log2(-x+$\sqrt{{x}^{2}+1}$)=log2(x+$\sqrt{{x}^{2}+1}$)(-x+$\sqrt{{x}^{2}+1}$)=log2(x2+1-x2)=log21=0,
即f(-x)=-f(x),则函数为奇函数;

点评 本题主要考查函数奇偶性的判断,根据函数奇偶性的定义是解决本题的关键.注意要先判断定义域是否关于原点对称.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网