题目内容
【题目】设f(x)是定义在R上的奇函数,且f(2)=0,当x>0时,有xf'(x)+f(x)<0恒成立,则不等式xf(x)>0的解集是( )
A.(﹣2,0)∪(2,+∞)
B.(﹣2,2)
C.(﹣∞,﹣2)∪(2,+∞)
D.(﹣2,0)∪(0,2)
【答案】D
【解析】解:令g(x)=xf(x),g′(x)=xf'(x)+f(x)<0,
∴g(x)在(0,+∞)递减,
∵f(x)是定义在R上的奇函数,
∴f(﹣x)=﹣f(x),
∴g(﹣x)=﹣xf(﹣x)=xf(x)=g(x),
∴g(x)在R是偶函数,
∴g(x)在(﹣∞,0)递增,
而f(2)=0,故g(2)=g(﹣2)=0,
∴不等式xf(x)>0,
∴g(x)<g(2),∴|x|<2,
解得:﹣2<x<2,
而x=0时,g(x)=0,
故不等式的解集是(﹣2,0)∪(0,2),
故选:D.
【考点精析】掌握利用导数研究函数的单调性是解答本题的根本,需要知道一般的,函数的单调性与其导数的正负有如下关系: 在某个区间内,(1)如果,那么函数在这个区间单调递增;(2)如果,那么函数在这个区间单调递减.
练习册系列答案
相关题目
【题目】为了解某班学生喜爱打篮球是否与性别有关,对本班人进行了问卷调查得到了如下的列联表:已知在全部人中随机抽取人,抽到喜爱打篮球的学生的概率为.
(1)请将上面的列联表补充完整(不用写计算过程);并求出:有多大把握认为喜爱打篮球与性别有关,说明你的理由;
(2)若从该班不喜爱打篮球的男生中随机抽取3人调查,求其中某男生甲被选到的概率。下面的临界值表供参考:
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.072 | 2.706 | 3.841 | 5. 024 | 6.635 | 7.879 | 10.828 |
(参考公式: ,其中)