题目内容
【题目】已知f(x)是定义在R上的偶函数,f(x)在[0,+∞)上是增函数,且f( )=0,则不等式f( )>0的解集为( )
A.(0, )∪(2,+∞)
B.( ,1)∪(2,+∞)??
C.(0, )
D.(2,+∞)
【答案】A
【解析】解:方法1: 因为函数f(x)是定义在R上的偶函数,
所以不等式f( )>0等价为 ,
因为函数f(x)在[0,+∞)上是增函数,且f( )=0,
所以 ,即 ,
即 或 ,
解得 或x>2.
方法2:已知f(x)是定义在R上的偶函数,f(x)在[0,+∞)上是增函数,且f( )=0,
所以f(x)在(﹣∞,0]上是减函数,且f(﹣ )=0.①若 ,则 ,此时解得 .②若 ,则 ,解得x>2.综上不等式f( )>0的解集为(0, )∪(2,+∞).
故选A.
【考点精析】根据题目的已知条件,利用奇偶性与单调性的综合的相关知识可以得到问题的答案,需要掌握奇函数在关于原点对称的区间上有相同的单调性;偶函数在关于原点对称的区间上有相反的单调性.
【题目】近年来空气质量逐步恶化,雾霾天气现象增多,大气污染危害加重,大气污染可引起心悸、呼吸困难等心肺疾病.为了解心肺疾病是否与性别有关,在市第一人民医院随机对入院50人进行了问卷调查,得到如下的列联表:
患心肺疾病 | 不患心肺疾病 | 合计 | |||||||||
男 | 20 | 5 | 25 | ||||||||
女 | 10 | 15 | 25 | ||||||||
合计 | 30 | 20 | 50 | ||||||||
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |||||
2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 | |||||
(1)是否有99.5%的把握认为患心肺疾病与性别有关?说明你的理由;(2)已知在患心肺疾病的10位女性中,有3位又患有胃病,现在从患心肺疾病的10位女性中,选出3位进行其他方面的排查,其中患胃病的人数为,求的分布列、数学期望.参考公式:,其中