题目内容
3.设f(x)=$\frac{4^x}{{{4^x}+2}}$,(1)若0<a<1,求f(a)+f(1-a)的值;
(2)求$f(\frac{1}{2015})+f(\frac{2}{2015})+f(\frac{3}{2015})+…+f(\frac{2012}{2015})+f(\frac{2013}{2015})+f(\frac{2014}{2015})$的值.
分析 (1)利用函数的解析式,直接求解表达式的值即可.
(2)利用(1)的结果求解即可.
解答 解:(1)f(x)=$\frac{4^x}{{{4^x}+2}}$,
$f(a)+f(1-a)=\frac{4^a}{{{4^a}+2}}+\frac{{{4^{1-a}}}}{{{4^{1-a}}+2}}$=$\frac{4^a}{{{4^a}+2}}+\frac{{\frac{4}{4^a}}}{{\frac{4}{4^a}+2}}$=$\frac{4^a}{{{4^a}+2}}+\frac{4}{{4+2•{4^a}}}$=$\frac{4^a}{{{4^a}+2}}+\frac{2}{{2+{4^a}}}$=$\frac{{{4^a}+2}}{{{4^a}+2}}=1$
(2)根据(1)的结论$f(\frac{1}{2015})+f(\frac{2}{2015})+f(\frac{3}{2015})+…+f(\frac{2012}{2015})+f(\frac{2013}{2015})+f(\frac{2014}{2015})$=$[f(\frac{1}{2015})+f(\frac{2014}{2015})]+[f(\frac{2}{2015})+f(\frac{2013}{2015})+…+[f(\frac{1007}{2015})+f(\frac{1008}{2015})]$=1007×1=1007.
点评 本题考查函数的解析式的应用,函数值的求法,考查计算能力.
练习册系列答案
相关题目
13.已知集合A={x|x2-2x-3>0},B={x|ax2+bx+c≤0,a,b,c∈R,ac≠0},若A∩B=(3,4],A∪B=R,则$\frac{b^2}{a}+\frac{a}{c^2}$的最小值是( )
A. | 3 | B. | $\frac{3}{2}$ | C. | 1 | D. | $\frac{3}{4}$ |
13.下列结论中正确的是( )
A. | 如果直线l垂直于平面α内的无数条直线,那么l⊥α | |
B. | 如果直线1平行于平面α内的无数条直线,那么l∥α | |
C. | 过空间一点有且只有一条直线平行于已知平面 | |
D. | 过空间一点有且只有一条直线垂直于已知平面 |