题目内容

3.设f(x)=$\frac{4^x}{{{4^x}+2}}$,
(1)若0<a<1,求f(a)+f(1-a)的值;
(2)求$f(\frac{1}{2015})+f(\frac{2}{2015})+f(\frac{3}{2015})+…+f(\frac{2012}{2015})+f(\frac{2013}{2015})+f(\frac{2014}{2015})$的值.

分析 (1)利用函数的解析式,直接求解表达式的值即可.
(2)利用(1)的结果求解即可.

解答 解:(1)f(x)=$\frac{4^x}{{{4^x}+2}}$,
$f(a)+f(1-a)=\frac{4^a}{{{4^a}+2}}+\frac{{{4^{1-a}}}}{{{4^{1-a}}+2}}$=$\frac{4^a}{{{4^a}+2}}+\frac{{\frac{4}{4^a}}}{{\frac{4}{4^a}+2}}$=$\frac{4^a}{{{4^a}+2}}+\frac{4}{{4+2•{4^a}}}$=$\frac{4^a}{{{4^a}+2}}+\frac{2}{{2+{4^a}}}$=$\frac{{{4^a}+2}}{{{4^a}+2}}=1$
(2)根据(1)的结论$f(\frac{1}{2015})+f(\frac{2}{2015})+f(\frac{3}{2015})+…+f(\frac{2012}{2015})+f(\frac{2013}{2015})+f(\frac{2014}{2015})$=$[f(\frac{1}{2015})+f(\frac{2014}{2015})]+[f(\frac{2}{2015})+f(\frac{2013}{2015})+…+[f(\frac{1007}{2015})+f(\frac{1008}{2015})]$=1007×1=1007.

点评 本题考查函数的解析式的应用,函数值的求法,考查计算能力.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网