题目内容
8.数列{an}中,an+1=1+$\frac{1}{{a}_{n}}$,a1=1,则an=$\frac{1}{2}[\frac{(1+\sqrt{5})^{n+1}-(1-\sqrt{5})^{n+1}}{(1+\sqrt{5})^{n}-(1-\sqrt{5})^{n}}]$.(n∈N*).分析 令$x=1+\frac{1}{x}$,化为x2-x-1=0,解得x1,2=$\frac{1±\sqrt{5}}{2}$.x1+x2=1,x1x2=-1.则$\frac{{a}_{n+1}-{x}_{1}}{{a}_{n+1}-{x}_{2}}$÷$\frac{{a}_{n}-{x}_{1}}{{a}_{n}-{x}_{2}}$=$\frac{{x}_{2}}{{x}_{1}}$.因此数列$\{\frac{{a}_{n}-{x}_{1}}{{a}_{n}-{x}_{2}}\}$是等比数列,首项为$\frac{{a}_{1}-{x}_{1}}{{a}_{1}-{x}_{2}}$,公比为$\frac{{x}_{2}}{{x}_{1}}$.即可得出.
解答 解:令$x=1+\frac{1}{x}$,化为x2-x-1=0,
解得x1,2=$\frac{1±\sqrt{5}}{2}$.
则x1+x2=1,x1x2=-1.
∴$\frac{{a}_{n+1}-{x}_{1}}{{a}_{n+1}-{x}_{2}}$÷$\frac{{a}_{n}-{x}_{1}}{{a}_{n}-{x}_{2}}$
=$\frac{1+\frac{1}{{a}_{n}}-{x}_{1}}{1+\frac{1}{{a}_{n}}-{x}_{2}}$×$\frac{{a}_{n}-{x}_{2}}{{a}_{n}-{x}_{1}}$
=$\frac{[{a}_{n}(1-{x}_{1})+1]({a}_{n}-{x}_{2})}{[{a}_{n}(1-{x}_{2})+1]({a}_{n}-{x}_{1})}$
=$\frac{{x}_{2}}{{x}_{1}}$×$\frac{{a}_{n}^{2}-{a}_{n}-1}{{a}_{n}^{2}-{a}_{n}-1}$
=$\frac{{x}_{2}}{{x}_{1}}$.
∴数列$\{\frac{{a}_{n}-{x}_{1}}{{a}_{n}-{x}_{2}}\}$是等比数列,首项为$\frac{{a}_{1}-{x}_{1}}{{a}_{1}-{x}_{2}}$,公比为$\frac{{x}_{2}}{{x}_{1}}$.
∴$\frac{{a}_{n}-{x}_{1}}{{a}_{n}-{x}_{2}}$=$\frac{{a}_{1}-{x}_{1}}{{a}_{1}-{x}_{2}}$×$(\frac{{x}_{2}}{{x}_{1}})^{n-1}$.
取${x}_{2}=\frac{1+\sqrt{5}}{2}$,${x}_{1}=\frac{1-\sqrt{5}}{2}$.
$\frac{{a}_{1}-{x}_{1}}{{a}_{1}-{x}_{2}}$=$\frac{1-{x}_{1}}{1-{x}_{2}}$=$\frac{{x}_{2}}{{x}_{1}}$,
∴$\frac{{a}_{n}-{x}_{1}}{{a}_{n}-{x}_{2}}$=$(\frac{{x}_{2}}{{x}_{1}})^{n}$,
解得an=$\frac{{x}_{2}^{n+1}-{x}_{1}^{n+1}}{{x}_{2}^{n}-{x}_{1}^{n}}$=$\frac{1}{2}[\frac{(1+\sqrt{5})^{n+1}-(1-\sqrt{5})^{n+1}}{(1+\sqrt{5})^{n}-(1-\sqrt{5})^{n}}]$.
即an=$\frac{1}{2}[\frac{(1+\sqrt{5})^{n+1}-(1-\sqrt{5})^{n+1}}{(1+\sqrt{5})^{n}-(1-\sqrt{5})^{n}}]$.(n∈N*).
点评 本题考查了递推关系的应用、等比数列的通项公式、一元二次方程的根与系数的关系,考查了推理能力与计算能力,属于中档题.
A. | y=x3 | B. | y=2|x| | C. | y=-x2+1 | D. | y=$\frac{1}{x^2}$ |
A. | y=${3^{\frac{1}{x+1}}}$ | B. | y=${2^{-\frac{x}{2}}}$ | C. | y=x2+x+1 | D. | y=$\sqrt{1-{2}^{x}}$ |