题目内容
已知A(-2,0),B(2,0),动点P与A、B两点连线的斜率分别为
和
,且满足
·
="t" (t≠0且t≠-1).
(1)求动点P的轨迹C的方程;
(2)当t<0时,曲线C的两焦点为F1,F2,若曲线C上存在点Q使得∠F1QF2=120O,
求t的取值范围.
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823155309645241.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823155309677241.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823155309645241.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823155309677241.gif)
(1)求动点P的轨迹C的方程;
(2)当t<0时,曲线C的两焦点为F1,F2,若曲线C上存在点Q使得∠F1QF2=120O,
求t的取值范围.
(1)
+
=1(x≠
2)
(2)![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823155309786703.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823155309723246.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823155309755383.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823155309770106.gif)
(2)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823155309786703.gif)
(1)设点P坐标为(x,y),依题意得
=t
y2=t(x2-4)![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823155309833142.gif)
+
=1
轨迹C的方程为
+
=1(x≠
2).
(2)当-1<t<0时,曲线C为焦点在x轴上的椭圆,
设
=r1,
= r2, 则r1+ r2=2a=4.
在△F1PF2中,
=2c=4
,
∵∠F1PF2=120°,由余弦定理,
得4c2=r
+r
-2r1r2
= r
+r
+ r1r2
= (r1+r2)2-r1r2≥(r1+r2)2-(
)2=3a2, ∴16(1+t)≥12, ∴t≥-
.
所以当-
≤t<0时,曲线上存在点Q使∠F1QF2=120°
当t<-1时,曲线C为焦点在y轴上的椭圆,
设
=r1,
= r2,则r1+r2=2a=-4 t,
在△F1PF2中,
=2c=4
.
∵∠F1PF2=120O,由余弦定理,
得4c2=r
+r
-2r1r2
= r
+r
+ r1r2
= (r1+r2)2-r1r2≥(r1+r2)2-(
)2=3a2, ∴16(-1-t)≥-12t
t≤-4.
所以当t≤-4时,曲线上存在点Q使∠F1QF2=120O
综上知当t<0时,曲线上存在点Q使∠AQB=120O的t的取值范围是
.
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823155309801486.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823155309833142.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823155309833142.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823155309723246.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823155309755383.gif)
轨迹C的方程为
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823155309723246.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823155309755383.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823155309770106.gif)
(2)当-1<t<0时,曲线C为焦点在x轴上的椭圆,
设
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823155309989276.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823155310004281.gif)
在△F1PF2中,
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823155310129292.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823155310145265.gif)
∵∠F1PF2=120°,由余弦定理,
得4c2=r
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823155310160192.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823155310176140.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823155310191315.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823155310160192.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823155310176140.gif)
= (r1+r2)2-r1r2≥(r1+r2)2-(
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823155310238298.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823155310254221.gif)
所以当-
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823155310254221.gif)
当t<-1时,曲线C为焦点在y轴上的椭圆,
设
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823155309989276.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823155310004281.gif)
在△F1PF2中,
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823155310129292.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823155310332267.gif)
∵∠F1PF2=120O,由余弦定理,
得4c2=r
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823155310160192.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823155310176140.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823155310379336.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823155310160192.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823155310176140.gif)
= (r1+r2)2-r1r2≥(r1+r2)2-(
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823155310238298.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823155309833142.gif)
所以当t≤-4时,曲线上存在点Q使∠F1QF2=120O
综上知当t<0时,曲线上存在点Q使∠AQB=120O的t的取值范围是
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823155309786703.gif)
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目