题目内容
【题目】半径为1的圆O内切于正方形ABCD,正六边形EFGHPR内接于圆O,当EFGHPR绕圆心O旋转时,的取值范围是( )
A.[1﹣ , 1+]
B.[﹣1- , ﹣1+]
C.[﹣ , +]
D.[-﹣ , -+]
【答案】C
【解析】以O为圆心,建立如图所示的直角坐标系,
可得A(﹣1,﹣1),
设OE与Ox的反向延长线成θ角,
即有E(﹣cosθ,﹣sinθ),F(﹣cos(θ+),﹣sin(θ+)),0≤θ<2π,
则=(1﹣cosθ,1﹣sinθ)(﹣cos(θ+),﹣sin(θ+))
=cosθcos(θ+)+sinθsin(θ+)﹣(cos(θ+)+sin(θ+))
=cos﹣sin(θ+)=﹣sin(θ+),
当sin(θ+)=1,即θ=时,取得最小值﹣;
当sin(θ+)=﹣1,即θ=时,取得最大值+ .
即有的取值范围是[
故选:C.
以O为圆心,建立如图所示的直角坐标系,可得A(﹣1,﹣1),设OE与Ox的反向延长线成θ角,即有E(﹣cosθ,﹣sinθ),F(﹣cos(θ+),﹣sin(θ+)),0≤θ<2π,运用向量的坐标和向量的数量积的坐标表示,运用三角函数的恒等变换公式,结合正弦函数的值域,即可得到所求范围。
练习册系列答案
相关题目