题目内容
(本小题满分12分)
如图,
为椭圆
上的一个动点,弦
、
分别过焦点
、
,当
垂直于
轴时,恰好有![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824003921511713.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240039215273729.png)
(Ⅰ)求椭圆的离心率;
(Ⅱ)设
.
①当
点恰为椭圆短轴的一个端点时,求
的值;
②当
点为该椭圆上的一个动点时,试判断
是否为定值?
若是,请证明;若不是,请说明理由.
如图,
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824003921418300.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240039214331034.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824003921433396.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824003921449402.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824003921464334.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824003921480352.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824003921449402.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824003921496266.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824003921511713.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240039215273729.png)
(Ⅰ)求椭圆的离心率;
(Ⅱ)设
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824003921542940.png)
①当
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824003921418300.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824003921574479.png)
②当
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824003921418300.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824003921574479.png)
若是,请证明;若不是,请说明理由.
(1)
(2)(3)![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824003921620575.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824003921605483.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824003921620575.png)
试题分析:(Ⅰ)法一:设
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824003921636586.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824003921636641.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240039216521210.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824003921667333.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824003921683518.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824003921605483.png)
法二:由椭圆方程得,
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824003921714742.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824003921745710.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824003921761755.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824003921776531.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824003921605483.png)
(Ⅱ)法一:由(Ⅰ)知,
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824003921823702.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824003921839656.png)
①当A点恰为椭圆短轴的一个端点时,
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824003921854425.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824003921870401.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824003921886458.png)
由
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824003921901971.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824003921917620.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824003921932696.png)
∴点
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824003921964292.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824003921979627.png)
又
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824003921995533.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824003922010705.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824003922057616.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824003922073404.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824003922088530.png)
②当A点为该椭圆上的一个动点时,
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824003922104425.png)
证明:设
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824003922104621.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824003922135819.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824003922151721.png)
若
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824003922166298.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824003922198806.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824003922213809.png)
所以
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240039222291034.png)
若
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824003922166298.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824003922260929.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824003922276888.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824003922291931.png)
又直线
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824003921870401.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824003922322707.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240039223381189.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240039223541250.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824003922369722.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240039223851117.png)
由韦达定理得
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824003922400879.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824003922432798.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824003922447811.png)
∴
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240039224631945.png)
综上证得,当A点为该椭圆上的一个动点时,
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824003922104425.png)
法二:设
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824003922104621.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824003922135819.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240039225251190.png)
∵
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824003922556727.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824003922572978.png)
又
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824003922588727.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824003922603699.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824003922619300.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824003922634334.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240039226661213.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240039226811059.png)
③
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824003922697165.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824003922712683.png)
同理:由
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824003922728722.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824003922744729.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824003922759519.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824003922790570.png)
∴
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824003921620575.png)
点评:解决该试题的关键是能利用联立方程组的方法,结合韦达定理,以及判别式,来表示参数的值,进而结合函数的表达式化简求解为定值,考查了分析问题和解决问题的能力,属于中档题。
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目