题目内容

【题目】如图,四棱锥中,已知平面 .

(1)求证:平面平面

(2)直线与平面所成角为,求二面角的平面角的正切值.

【答案】(1)见解析;(2.

【解析】试题分析:(1)证明面面垂直,一般先在其中一个平面内寻找另一平面的一条垂线,再根据面面垂直判定定理进行论证.先利用平几知识计算出,再根据条件面面垂直,利用面面垂直性质定理转化为线面垂直.2)求二面角关键作出二面角的平面角,而作二面角的平面角,一般利用面面垂直性质定理得线面垂直,再结合三垂线定理及其逆定理可得,最后根据直角三角形求正切值.

试题解析:(1)证出

因为平面,

,所以平面平面

2)过的垂线,垂足为,则

的垂线,垂足为,连

为所求

点睛:垂直、平行关系证明中应用转化与化归思想的常见类型.

(1)证明线面、面面平行,需转化为证明线线平行.

(2)证明线面垂直,需转化为证明线线垂直.

(3)证明线线垂直,需转化为证明线面垂直.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网