题目内容
【题目】选修4-4:坐标系与参数方程
已知在平面直角坐标系中,曲线的参数方程是 (为参数),以坐标原点为极点, 轴的正半轴为极轴,建立极坐标系,曲线的极坐标方程是.
(Ⅰ) 求曲线与交点的平面直角坐标;
(Ⅱ) 点分别在曲线, 上,当最大时,求的面积(为坐标原点).
【答案】(Ⅰ).(Ⅱ)
【解析】试题分析:
(1)分别求得两圆的标准方程,然后联立两方程即可求得
(2)利用几何性质首先确定三角形面积最大时 的方程,然后结合点到直线的距离公式求解三角形的高,据此即可求得三角形面积的最大值.
试题解析:
(Ⅰ)由得
则曲线的普通方程为.
又由,得,得.
把两式作差得, ,代入,
可得交点坐标为为.
(Ⅱ) 由平面几何知识可知,
当依次排列且共线时, 最大,此时,
直线的方程为,则到的距离为,
所以的面积为.
练习册系列答案
相关题目