题目内容

设函数f(x)=ex+x-2,g(x)=ln x+x2-3.若实数a,b满足f(a)=0,g(b)=0,则  (  ).
A.g(a)<0<f(b)B.f(b)<0<g(a)
C.0<g(a)<f(b)D.f(b)<g(a)<0
A
对于f(x)=ex+x-2,f′(x)=ex+1>0,f(x)在R上递增,由于f(0)=e0-2=-1<0,
f(1)=e+1-2=e-1>0,
∴由f(a)=0知0<a<1;
对于g(x)=ln x+x2-3(x>0),g′(x)=+2x>0(x>0),
∴g(x)在(0,+∞)上递增,
由于g(1)=-2<0,g(2)=ln 2+1>0,
∴由g(b)=0知1<b<2.
故f(b)>f(1)>0,g(a)<g(1)<0,∴g(a)<0<f(b).
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网