题目内容
18.设i是虚数单位,那么使得${(-\frac{1}{2}+\frac{{\sqrt{3}}}{2}i)^n}=1$的最小正整数n的值为( )A. | 2 | B. | 3 | C. | 4 | D. | 5 |
分析 由已知$(-\frac{1}{2}+\frac{\sqrt{3}}{2}i)^{2}$=$-\frac{1}{2}-\frac{\sqrt{3}}{2}i$,$(-\frac{1}{2}+\frac{\sqrt{3}}{2}i)(-\frac{1}{2}-\frac{\sqrt{3}}{2}i)$=$(-\frac{1}{2})^{2}-(\frac{\sqrt{3}}{2}i)^{2}=\frac{1}{4}+\frac{3}{4}$=1;由此得到答案.
解答 解:因为已知$(-\frac{1}{2}+\frac{\sqrt{3}}{2}i)^{2}$=$-\frac{1}{2}-\frac{\sqrt{3}}{2}i$,
$(-\frac{1}{2}+\frac{\sqrt{3}}{2}i)(-\frac{1}{2}-\frac{\sqrt{3}}{2}i)$=$(-\frac{1}{2})^{2}-(\frac{\sqrt{3}}{2}i)^{2}=\frac{1}{4}+\frac{3}{4}$=1;
故$(-\frac{1}{2}+\frac{\sqrt{3}}{2}i)^{3}$=1;
故选B.
点评 本题考查了复数的运算;对于已知$(-\frac{1}{2}+\frac{\sqrt{3}}{2}i)^{2}$=$-\frac{1}{2}-\frac{\sqrt{3}}{2}i$,$(-\frac{1}{2}+\frac{\sqrt{3}}{2}i)(-\frac{1}{2}-\frac{\sqrt{3}}{2}i)$=$(-\frac{1}{2})^{2}-(\frac{\sqrt{3}}{2}i)^{2}=\frac{1}{4}+\frac{3}{4}$=1经常用到.
A. | 8种 | B. | 10种 | C. | 12种 | D. | 14种 |
A. | $\frac{g(2)}{2}$-g(1)≤3 | B. | $\frac{g(2)}{2}$-g(1)≥2 | C. | $\frac{g(2)}{2}$-g(1)<4 | D. | $\frac{g(2)}{2}$-g(1)≥4 |
A. | 1 | B. | $\frac{\sqrt{2}}{2}$ | C. | $\frac{1}{2}$ | D. | $\sqrt{2}$ |
A. | (2,+∞) | B. | (-∞,-2)∪(0,2) | C. | (-2,0) | D. | (-∞,-2)∪(0,+∞) |