题目内容

【题目】有甲、乙两个班级进行数学考试,按照大于等于85分为优秀,85分以下为非优秀统计成绩,得到如下所示的列联表:

优秀

非优秀

总计

甲班

10

b

乙班

c

30

总计105

已知在全部105人中随机抽取1人,成绩优秀的概率为,则下列说法正确的是(

参考公式:

附表:

P(K2k)

0.050

0.010

0.001

k

3.841

6.635

10.828

A.列联表中c的值为30b的值为35

B.列联表中c的值为15b的值为50

C.根据列联表中的数据,若按95%的可靠性要求,能认为成绩与班级有关系

D.根据列联表中的数据,若按95%的可靠性要求,不能认为成绩与班级有关系

【答案】C

【解析】

根据题意可求出成绩优秀的学生数是,所以成绩非优秀的学生数是,即可求出的值,判断出的真假,再根据列联表求出K2,即可由独立性检验的基本思想判断出的真假.

由题意知,成绩优秀的学生数是,成绩非优秀的学生数是,所以c20b45,选项AB错误;根据列联表中的数据,得到≈6.109>3.841,因此有95%的把握认为成绩与班级有关系,选项C正确.

故选:C

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网