题目内容
【题目】设函数, .
(1)求的单调区间和极值;
(2)证明:若存在零点,则在区间上仅有一个零点.
【答案】(1)单调递减区间是,单调递增区间是;极小值;(2)证明详见解析.
【解析】
试题分析:本题主要考查导数的运算、利用导数判断函数的单调性、利用导数求函数的极值和最值、函数零点问题等基础知识,考查学生的分析问题解决问题的能力、转化能力、计算能力.(Ⅰ)先对求导,令解出,将函数的定义域断开,列表,分析函数的单调性,所以由表格知当时,函数取得极小值,同时也是最小值;(Ⅱ)利用第一问的表,知为函数的最小值,如果函数有零点,只需最小值,从而解出,下面再分情况分析函数有几个零点.
试题解析:(Ⅰ)由,()得
.
由解得.
与在区间上的情况如下:
所以,的单调递减区间是,单调递增区间是;
在处取得极小值.
(Ⅱ)由(Ⅰ)知,在区间上的最小值为.
因为存在零点,所以,从而.
当时,在区间上单调递减,且,
所以是在区间上的唯一零点.
当时,在区间上单调递减,且,,
所以在区间上仅有一个零点.
综上可知,若存在零点,则在区间上仅有一个零点.
练习册系列答案
相关题目