题目内容
某数学老师对本校2013届高三学生的高考数学成绩按1:200进行分层抽样抽取了20名学生的成绩,并用茎叶图记录分数如图所示,但部分数据不小心丢失,同时得到如下所示的频率分布表:
分数段(分) | [50,70) | [70,90) | [90,110) | [110,130) | [130,150) | 总计 |
频数 | | | | b | | |
频率 | a | 0.25 | | | | |
![](http://thumb.zyjl.cn/pic5/tikupic/b0/4/1plup4.png)
(1)求表中a,b的值及分数在[90,100)范围内的学生人数,并估计这次考试全校学生数学成绩的及格率(分数在[90,150)内为及格):
(2)从成绩在[100,130)范围内的学生中随机选4人,
设其中成绩在[100,110)内的人数为X,求X的分布列及数学期望.
(1)a=0.1,b=3;4;65%.
(2)分布列为
E(X)=2.2X 1 2 3 4 P
解析试题分析:(1)由[50,70)范围的频数,计算出该范围内的频率a,首先计算出[70,90)范围内的频数,然后得出[80,90),即可求出[90,100)范围内的学生人数,计算出[90,100)范围内的学生人数,然后除以20就是及格率.(2)写出随机变量X的所有可能取值,然后计算出相应的概率,列表即可的分布列,最后根据期望值公式计算期望值即可.
试题解析:(1)由茎叶图可知分数在[50,70)范围内的有2人,在[110,130) 范围内的有3人,
∴a= b=3;分数在[70,90)内的人数20×0.25=5,结合茎叶图可得分数在[70,80)内的人数为2,所以分数在[90,100)范围内的学生人数为4,故数学成绩及格的学生为13人,所以估计这次考试全校学生数学成绩的及格率为
×100%=65%.
(2)由茎叶图可知分数在[100,130)范围内的有7人,分数在[100,110)范围内的有4人,则随机变量X的所有可能取值为1,2,3,4.相应的概率为:P(X=1)==
;P(X=2)=
=
;P(X=3)=
=
;P(X=4)=
=
.
随机变量X的分布列为
E(X)=1×X 1 2 3 4 P +2×
+3×
+4×
=2.2
考点:1.茎叶图的含义以及频率和频数的计算;2.随机变量的分布列和数学期望.
![](http://thumb.zyjl.cn/images/loading.gif)
某年某省有万多文科考生参加高考,除去成绩为
分(含
分)以上的
人与成绩为
分(不含
分)以下的
人,还有约
万文科考生的成绩集中在
内,其成绩的频率分布如下表所示:
分数段 | ![]() | ![]() | ![]() | ![]() |
频率 | 0.108 | 0.133 | 0.161 | 0.183 |
分数段 | ![]() | ![]() | ![]() | ![]() |
频率 | 0.193 | 0.154 | 0.061 | 0.007 |
![](http://thumb.zyjl.cn/pic5/tikupic/20/c/1qkpv3.png)
![](http://thumb.zyjl.cn/pic5/tikupic/f5/3/18psi2.png)
(2)考生A填报志愿后,得知另外有4名同分数考生也填报了该志愿.若该志愿计划录取2人,并在同分数考生中随机录取,求考生A被该志愿录取的概率.
(参考数据:610×0.061+570×0.154+530×0.193+490×0.183+450×0.161+410×0.133=443.93)
某中学举行了一次“环保知识竞赛”,全校学生参加了这次竞赛.为了了解本次竞赛成绩情况,从中抽取了部分学生的成绩(得分取正整数,满分为100分)作为样本进行统计.请根据下面尚未完成并有局部污损的频率分布表和频率分布直方图(如图所示)解决下列问题:
频率分布表
组别 | 分组 | 频数 | 频率 |
第1组 | [50,60) | 8 | 0.16 |
第2组 | [60,70) | a | ▓ |
第3组 | [70,80) | 20 | 0.40 |
第4组 | [80,90) | ▓ | 0.08 |
第5组 | [90,100] | 2 | b |
| 合计 | ▓ | ▓ |
![](http://thumb.zyjl.cn/pic5/tikupic/87/5/ftlbo1.png)
、
(Ⅰ)写出
![](http://thumb.zyjl.cn/pic5/tikupic/dd/4/l3pdk1.png)
(Ⅱ)在选取的样本中,从竞赛成绩是80分以上(含80分)的同学中随机抽取2名同学到广场参加环保知识的志愿宣传活动,设
![](http://thumb.zyjl.cn/pic5/tikupic/b8/0/1iejl4.png)
![](http://thumb.zyjl.cn/pic5/tikupic/b8/0/1iejl4.png)
某兴趣小组欲研究昼夜温差大小与患感冒人数多少之间的关系,他们分别到气象局与某医院抄录了1至6月份每月10号的昼夜温差情况与因患感冒而就诊的人数,得到如下资料:
日 期 | 1月10日 | 2月10日 | 3月10日 | 4月10日 | 5月10日 | 6月10日 |
昼夜温差x(°C) | 10 | 11 | 13 | 12 | 8 | 6 |
就诊人数y(个) | 22 | 25 | 29 | 26 | 16 | 12 |
线性回归方程,再用被选取的2组数据进行检验.
(Ⅰ)求选取的2组数据恰好是相邻两个月的概率;
(Ⅱ)若选取的是1月与6月的两组数据,请根据2至5月份的数据,求出y关于x
的线性回归方程
![](http://thumb.zyjl.cn/pic5/tikupic/76/7/1joww3.png)
(Ⅲ)若由线性回归方程得到的估计数据与所选出的检验数据的误差均不超过2
人,则认为得到的线性回归方程是理想的,试问该小组所得线性回归方程是否理
想?
(参考公式:
![](http://thumb.zyjl.cn/pic5/tikupic/f6/e/1c9xh4.png)