题目内容

某市为增强市民的环境保护意识,面向全市征召义务宣传志愿者.现从符合条件的志愿者中随机抽取100名按年龄分组:第1组,第2组,第3组,第4组,第5组,得到的频率分布直方图如图所示.

(1)若从第3,4,5组中用分层抽样的方法抽取6名志愿者参加广场的宣传活动,应从第3,4,5组各抽取多少名志愿者?
(2)在(1)的条件下,该县决定在这6名志愿者中随机抽取2名志愿者介绍宣传经验,求第4组至少有一名志愿者被抽中的概率.

(1)3,2,1;(2).

解析试题分析:(1)先由频率分布直方图得到第3,4,5组的概率,从而得到这三组中各组的人数以及三组总人数,所以易知这三组人数的比例关系,从而由分层抽样的定义确定在各组中应抽取多少人;(2)先确定在这6名志愿者中随机抽取2名志愿者共有多少种抽取方法,在确定第4组至少有一名志愿者被抽中时的抽取方法有多少种,用后者比前者即为所求.
试题解析:(1)第3组的人数为0.3×100=30, 第4组的人数为0.2×100=20, 第5组的人数为0.1×100=10.                                                             3分
因为第3,4,5组共有60名志愿者,所以利用分层抽样的方法在60名志愿者中抽取6名志愿者,每组抽取的人数分别为:第3组:×6="3;" 第4组:×6="2;" 第5组:×6=1.
所以应从第3,4,5组中分别抽取3人,2人,1人.                           6分
(2)记第3组的3名志愿者为A1,A2,A3,第4组的2名志愿者为B1,B2,第5组的1名志愿者为C1.
则从6名志愿者中抽取2名志愿者有:
(A1,A2), (A1,A3),(A1,B1),(A1,B2),(A1,C1),(A2,A3),(A2,B1),(A2,B2),(A2,C1),(A3,B1),(A3,B2),
(A3,C1),(B1,B2),(B1,C1),(B2,C1),共有15种.                             8分
其中第4组的2名志愿者B1,B2至少有一名志愿者被抽中的有:
(A1,B1), (A1,B2), (A2,B1), (A2,B2), (A3,B1), (A3,B2), (B1,B2), (B1,C1), (B2,C1),共有9种,                                                                10分
所以第4组至少有一名志愿者被抽中的概率为                    12分
考点:1.分层抽样;2.频率分布直方图;3.随机事件的概率.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网