题目内容
设e1,e2是平面内两个互相垂直的单位向量,若向量m满足(m-e1)·(m-e2)=0,则|m|的最大值为( )
A.1 | B. | C. | D.2 |
B
因为|e1|=|e2|=1,e1⊥e2,
所以(m-e1)·(m-e2)
=m2-m·(e1+e2)+e1·e2
=m2-m·(e1+e2)=0,
即m2=m·(e1+e2).
设m与e1+e2的夹角为θ,
因为|e1+e2|=
==,
所以|m|2=|m||e1+e2|cosθ,
即|m|=cosθ,因为θ∈[0,π],
所以|m|max=.
所以(m-e1)·(m-e2)
=m2-m·(e1+e2)+e1·e2
=m2-m·(e1+e2)=0,
即m2=m·(e1+e2).
设m与e1+e2的夹角为θ,
因为|e1+e2|=
==,
所以|m|2=|m||e1+e2|cosθ,
即|m|=cosθ,因为θ∈[0,π],
所以|m|max=.
练习册系列答案
相关题目