题目内容

7.已知命题p:方程x2-(2+a)x+2a=0在[-1,1]上有且仅有一解;命题q:存在实数x使不等式x2+2ax+2a≤0成立,若命题“¬p且q”是真命题,求a的取值范围.

分析 先通过因式分解求出方程x2-(2+a)x+2a=0的根,再根据判别式确定不等式x2+2ax+2a≤0有解,最后根据复合命题真假求出a的取值范围.

解答 解:①若命题p为真,由x2-(2+a)x+2a=0得(x-2)(x-a)=0,解得x=2或x=a,
又∵方程x2-(2+a)x+2a=0,在[-1,1]上有且仅有一解,∴-≤a≤1.
②若命题q为真,即存在实数x满足不等式x2+2ax+2a≤0
∴△=4a2-8a≥0解得a≤0或a≥2,
因为命题“¬p且q”是真命题,所以,命题p是假命题、命题q是真命题,
当命题p为假时,a<-1或a>1,
当命题q为真时,a≤0或a≥2,
因此,实数a的取值范围为(-∞,-1)∪[2,+∞).

点评 本题主要考查了复合命题真假的判断,一元二次方程和一元二次不等式的解法,以及集合交集的运算,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网