题目内容

【题目】已知点P为函数f(x)=lnx的图象上任意一点,点Q为圆[x﹣(e+ )]2+y2=1任意一点,则线段PQ的长度的最小值为(
A.
B.
C.
D.e+ ﹣1

【答案】C
【解析】解:由圆的对称性可得只需考虑圆心Q(e+ ,0) 到函数f(x)=lnx图象上一点的距离的最小值.
设f(x)图象上一点(m,lnm),
由f(x)的导数为f′(x)=
即有切线的斜率为k=
可得 =﹣m,
即有lnm+m2﹣(e+ )m=0,
由g(x)=lnx+x2﹣(e+ )x,可得g′(x)= +2x﹣(e+ ),
当2<x<3时,g′(x)>0,g(x)递增.
又g(e)=lne+e2﹣(e+ )e=0,
可得x=e处点(e,1)到点Q的距离最小,且为
则线段PQ的长度的最小值为为 ﹣1,即
故选:C.
由圆的对称性可得只需考虑圆心Q(e+ ,0)到函数f(x)=lnx图象上一点的距离的最小值.设f(x)图象上一点P(m,lnm),求得切线的斜率,由两直线垂直的条件:斜率之积为﹣1,可得lnm+m2﹣(e+ )m=0,由g(x)=lnx+x2﹣(e+ )x,求出导数,判断单调性,可得零点e,运用两点的距离公式计算即可得到所求值.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网