题目内容
已知等差数列
的前
项和为
,且
.
(I)求数列
的通项公式;
(II)设等比数列
,若
,求数列
的前
项和![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824025334979375.png)
(Ⅲ)设
,求数列
的前
项和![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824025335041391.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824025334854819.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824025334869297.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824025334885388.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824025334901618.png)
(I)求数列
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824025334916473.png)
(II)设等比数列
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824025334932821.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824025334947609.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824025334947491.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824025334869297.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824025334979375.png)
(Ⅲ)设
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824025334994642.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824025335010493.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824025335025298.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824025335041391.png)
(Ⅰ)
;(Ⅱ)
;(Ⅲ)
.
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824025335057603.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240253350721404.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824025335088505.png)
试题分析:(Ⅰ)两种思路,一是根据等差数列的通项公式、求和公式,建立
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824025335103460.png)
二是利用等差数列的性质,由
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824025335119469.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824025335135444.png)
结合
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824025335150433.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824025335166414.png)
(Ⅱ)由(I得
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824025335181541.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824025335197563.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824025335213403.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824025335228394.png)
(Ⅲ)由(Ⅰ)知,
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824025335244573.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824025335291893.png)
该题综合考查等差数列、等比数列的基础知识,以及数列求和的方法,较为典型.
试题解析:(Ⅰ)法一:
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240253353061305.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824025335322646.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824025335337928.png)
法二:由
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824025335119469.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824025335384504.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824025335135444.png)
又因为
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824025335150433.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824025335166414.png)
从而
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824025335447912.png)
(Ⅱ)由上可得
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824025335181541.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824025335197563.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824025335213403.png)
从而,
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824025335228394.png)
所以.
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240253355251415.png)
(Ⅲ)由(Ⅰ)知,
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824025335244573.png)
∴
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240253355561701.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240253355712242.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824025335587864.png)
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目