题目内容
【题目】(本小题满分12分)我们把一系列向量按次序排成一列,称之为向量列,记作,已知向量列满足:,.
(1)证明:数列是等比数列;
(2)设表示向量与间的夹角,若,对于任意正整数,不等式恒成立,求实数的范围
(3)设,问数列中是否存在最小项?若存在,求出最小项;若不存在,请说明理由
【答案】(1)见解析;(2);(3)存在最小项,最小项是
【解析】
试题分析:第一问利用等比数列的定义证明,第二问只需证明不等式左边的最小值大于a(a+2),接下来研究左边和式的单调性,最后转化为求解,第三问假设存在第n项最小满足,求解关于n的不等式得第5项最小.
试题解析:(1)∵ ,
∴ ,
∴数列是等比数列;
(2)∵ ,∴ , ,
不等式化为:对任意正整数恒成立.
设.
又 ,
∴ 数列单调递增,,
要使不等式恒成立,只要, ,得
∴ 使不等式对于任意正整数恒成立的的取值范围是.
(3)∵,∴ ,
假设中的第 项最小,由 ,,∴,
当时,有,由可得,即,∴ ,,或(舍),
∴ ,即有,
由,得, 又,∴ ;
故数列中存在最小项,最小项是
练习册系列答案
相关题目