题目内容
8.已知函数f(x)=2$\sqrt{3}$asinxcosx+2acos2x+b,其中a,b∈R.且ab≠0.(Ⅰ)求函数f(x)的图象的对称轴方程;
(Ⅱ)当x∈[0,$\frac{π}{4}$]时.函数f(x)的值域为[1,2],求a,b的值.
分析 (I)先利用二倍角公式、辅助角公式对已知函数进行化简可得,f(x)=2asin(2x+$\frac{π}{6}$)+a+b,结合正弦函数的性质即可求解;
(II)由x的范围先求2x$+\frac{π}{6}$,然后求解sin(2x$+\frac{π}{6}$)的范围,分a>0,当a<0两种情况求解函数的值域,即可求a,b.
解答 解:(I)∵f(x)=2$\sqrt{3}$asinxcosx+2acos2x+b,
=$\sqrt{3}$asin2x+a(1+cos2x)+b,
=$\sqrt{3}$asin2x+acos2x+a+b,
=2asin(2x+$\frac{π}{6}$)+a+b(3分),
由2x+$\frac{π}{6}=\frac{π}{2}+kπ(,k∈Z)$可得函数f(x)的对称轴方程是x=$\frac{π}{6}+\frac{kπ}{2}(k∈Z)$(5分).
(II)∵x∈[0,$\frac{π}{4}$],
∴2x$+\frac{π}{6}$∈[$\frac{π}{6},\frac{2π}{3}$],
∴sin(2x$+\frac{π}{6}$)∈[$\frac{1}{2},1$](6分),
①当a>0时,f(x)∈{2a+b,3a+b],根据题意知$\left\{\begin{array}{l}{2a+b=1}\\{3a+b=2}\end{array}\right.$,解可得$\left\{\begin{array}{l}{a=1}\\{b=-1}\end{array}\right.$(9分),
②当a<0时,f(x)∈{3a+2b,2a+b],根据题意知$\left\{\begin{array}{l}{3a+b=1}\\{2a+b=2}\end{array}\right.$,解可得$\left\{\begin{array}{l}{a=-1}\\{b=4}\end{array}\right.$(11分),
综上,所求的a,b的值为$\left\{\begin{array}{l}{a=1}\\{b=-1}\end{array}\right.或\left\{\begin{array}{l}{a=-1}\\{b=4}\end{array}\right.$(12分).
点评 本题主要考查了正弦函数的图象及性质、辅助角公式、二倍角公式的应用,解题中要注意分类讨论思想的应用.
A. | 45° | B. | 135° | C. | -45° | D. | 120° |
A. | $\sqrt{2}$ | B. | 1 | C. | 2 | D. | $\sqrt{3}$ |
A. | -2 | B. | -1 | C. | 2 | D. | 1 |
A. | $\frac{π}{6}$ | B. | $\frac{π}{4}$ | C. | $\frac{π}{3}$ | D. | $\frac{π}{2}$ |
A. | 8 | B. | 15 | C. | 16 | D. | 32 |