题目内容

对于函数f(x)=acosx+bx2+c,其中a,b,c∈R,适当地选取a,b,c的一组值计算f(1)和f(-1),所得出的正确结果只可能是(  )
A.4和6B.3和-3
C.2和4D.1和1
D
∵f(-x)=acos(-x)+b(-x)2+c=acosx+bx2+c=f(x),∴函数f(x)是偶函数,故选D.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网