题目内容
【题目】为提高黔东南州的整体旅游服务质量,州旅游局举办了黔东南州旅游知识竞赛,参赛单位为本州内各旅游协会,参赛选手为持证导游.现有来自甲旅游协会的导游3名,其中高级导游2名;乙旅游协会的导游5名,其中高级导游3名.从这8名导游中随机选择4人 参加比赛.
(Ⅰ)设为事件“选出的4人中恰有2名高级导游,且这2名高级导游来自同一个旅游协会”,求事件发生的概率.
(Ⅱ)设为选出的4人中高级导游的人数,求随机变量的分布列和数学期望.
【答案】(1);(2)见解析.
【解析】试题分析:(Ⅰ)由已知条件知,当两名高级导游来自甲旅游协会时,有种不同选法,当两名高级导游来自乙旅游协会时,有种不同选法,利用古典概型及其概率的计算公式,即可求解事件发生的概率;
(Ⅱ)由题意,得随机变量的所有可能取值为,求得随便取每个值的概率,列出分布列,利用公式求解随机变量的期望.
试题解析:
(Ⅰ)由已知条件知,当两名高级导游来自甲旅游协会时,有种不同选法;
当两名高级导游来自乙旅游协会时,有种不同选法,则
,所以事件发生的概率为 .
(Ⅱ)随机变量的所有可能取值为1,2,3,4.
,,
,.
所以,随机变量的分布列为
1 | 2 | 3 | 4 | |
则随机变量的数学期望(人).
练习册系列答案
相关题目