题目内容
【题目】选修4-5:不等式选讲设函数
(1)当时,解不等式:;
(2)若关于x的不等式f(x)≤4的解集为[﹣1,7],且两正数s和t满足,求证:.
【答案】(1)(2)见解析
【解析】试题分析:(1)先根据绝对值定义将不等式化为三个不等式组,分别求解,最后求并集,(2)先根据不等式解集得对应方程解求参数,再根据1的代换,利用基本不等式进行证明.
试题解析:当a=2时,不等式:f(x)≥6﹣|2x﹣5|,可化为|x﹣2|+|2x﹣5|≥6.
①x≥2.5时,不等式可化为x﹣2+2x﹣5≥6,∴x≥;
②2≤x<2.5,不等式可化为x﹣2+5﹣2x≥6,∴x∈;
x<2,不等式可化为2﹣x+5﹣2x≥6,∴x≤,
综上所述,不等式的解集为(﹣];
(Ⅱ)证明:不等式f(x)≤4的解集为[a﹣4,a+4]=[﹣1,7],∴a=3,
∴=()(2s+t)=(10++)≥6,当且仅当s=,t=2时取等号
练习册系列答案
相关题目