Loading [MathJax]/jax/output/CommonHTML/jax.js

题目内容

15.用符号“∈”或“∉”填空:
(1)2+5∈{x|x≤2+3};
(2)3∉{x|x=n2+1,n∈N};
(3)x=1352,y=3+2π,M={m|m=a+b2,a∈Q,b∈Q},则x∈M,y∉M.

分析 (1)通过比较2+522+32大小关系,从而可得出2+52+3,从而得出2+5{x|x2+3}
(2)只需令3=n2+1,解出的n是否是自然数即可;
(3)将x,y都写成m=a+b2的形式,然后判断是否满足a∈Q,b∈Q即可;

解答 解:(1)2+52=7+2102+32=7+43
21043
2+522+32
2+52+3
2+5{x|x2+3}
(2)令n2+1=3,则n2=2;
∵n∈N;
∴3∉{x|x=n2+1,n∈N};
(3)x=3+523523+52=3415412
341Q541Q
∴x∈M;
y=3+π2,π∉Q;
∴y∉M.
故答案为:∈,∉,∈,∉.

点评 考查要比较两个无理数的大小可通过平方的方法,描述法表示集合的定义,判断元素与集合关系的方法.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网