题目内容
【题目】设向量 =(sin2ωx,cos2ωx), =(cosφ,sinφ),其中|φ|< ,ω>0,函数f(x)= 的图象在y轴右侧的第一个最高点(即函数取得最大值的点)为 ,在原点右侧与x轴的第一个交点为 .
(Ⅰ)求函数f(x)的表达式;
(Ⅱ)在△ABC中,角A′B′C的对边分别是a′b′c′若f(C)=﹣1, ,且a+b=2 ,求边长c.
【答案】解:(I)因为向量 =(sin2ωx,cos2ωx), =(cosφ,sinφ),
所以 =sin2ωxcosφ+cos2ωxsinφ=sin(2ωx+φ),
由题意 ,
将点 代入y=sin(2x+φ),得 ,
所以 ,又因为 ,∴
即函数的表达式为 .
(II)由f(C)=﹣1,即
又∵0<C<π,∴
由 ,知 ,
所以ab=3
由余弦定理知c2=a2+b2﹣2abcosC=(a+b)2﹣2ab﹣2abcosC=
所以 c=3
【解析】(I)利用向量的数量积通过两角和与差的三角函数化简函数的解析式,利用已知条件求解解析式即可.(II)求出C,利用 ,以及余弦定理即可求出c的值.
练习册系列答案
相关题目
【题目】在某次试验中,有两个试验数据,统计的结果如下面的表格1.
(1)在给出的坐标系中画出的散点图; 并判断正负相关;
(2)填写表格2,然后根据表格2的内容和公式求出对的回归直线方程,并估计当为10时的值是多少?(公式:,)
1 | 2 | 3 | 4 | 5 | |
2 | 3 | 4 | 4 | 5 |
表1
表格2
序号 |
|
|
|
|
1 | 1 | 2 | ||
2 | 2 | 3 | ||
3 | 3 | 4 | ||
4 | 4 | 4 | ||
5 | 5 | 5 | ||