题目内容
已知焦点在轴上的椭圆过点,且离心率为,为椭圆的左顶点.
(1)求椭圆的标准方程;
(2)已知过点的直线与椭圆交于,两点.
(ⅰ)若直线垂直于轴,求的大小;
(ⅱ)若直线与轴不垂直,是否存在直线使得为等腰三角形?如果存在,求出直线的方程;如果不存在,请说明理由.
(1)求椭圆的标准方程;
(2)已知过点的直线与椭圆交于,两点.
(ⅰ)若直线垂直于轴,求的大小;
(ⅱ)若直线与轴不垂直,是否存在直线使得为等腰三角形?如果存在,求出直线的方程;如果不存在,请说明理由.
(1)椭圆的标准方程为.
(2)不存在,详见解析
(2)不存在,详见解析
解:(1)设椭圆的标准方程为,且.
由题意可知:,.
所以.
所以,椭圆的标准方程为.
(2)由(1)得.设.
(ⅰ)当直线垂直于轴时,直线的方程为.
由 解得:或
即(不妨设点在轴上方).
则直线的斜率,直线的斜率.
因为 ,
所以.
所以 .
(ⅱ)当直线与轴不垂直时,由题意可设直线的方程为.
由消去得:.
因为 点在椭圆的内部,显然.
因为 ,,,
所以
.
所以 .
所以 为直角三角形.
假设存在直线使得为等腰三角形,则.
取的中点,连接,则.
记点为.
另一方面,点的横坐标,
所以 点的纵坐标.
所以
.
所以 与不垂直,矛盾.
所以 当直线与轴不垂直时,不存在直线使得为等腰三角形
由题意可知:,.
所以.
所以,椭圆的标准方程为.
(2)由(1)得.设.
(ⅰ)当直线垂直于轴时,直线的方程为.
由 解得:或
即(不妨设点在轴上方).
则直线的斜率,直线的斜率.
因为 ,
所以.
所以 .
(ⅱ)当直线与轴不垂直时,由题意可设直线的方程为.
由消去得:.
因为 点在椭圆的内部,显然.
因为 ,,,
所以
.
所以 .
所以 为直角三角形.
假设存在直线使得为等腰三角形,则.
取的中点,连接,则.
记点为.
另一方面,点的横坐标,
所以 点的纵坐标.
所以
.
所以 与不垂直,矛盾.
所以 当直线与轴不垂直时,不存在直线使得为等腰三角形
练习册系列答案
相关题目