题目内容
如图,设P是圆上的动点,点D是P在轴上投影,M为PD上一点,且.
(1)当P在圆上运动时,求点M的轨迹C的方程;
(2)求过点(3,0)且斜率为的直线被C所截线段的长度.
(1)当P在圆上运动时,求点M的轨迹C的方程;
(2)求过点(3,0)且斜率为的直线被C所截线段的长度.
(1) (2)
(1)动点M通过点P与已知圆相联系,所以把点P的坐标用点M的坐标表示,然后代入已知圆的方程即可;(2)直线方程和椭圆方程组成方程组,可以求解,也可以利用根与系数关系;结合两点的距离公式计算.
(1)设点M的坐标是,P的坐标是,
因为点D是P在轴上投影,
M为PD上一点,且,所以,且,
∵P在圆上,∴,整理得,
即C的方程是.
(2)过点(3,0)且斜率为的直线方程是,
设此直线与C的交点为,,
将直线方程代入C的方程得:
,化简得,∴,,
所以线段AB的长度是
,即所截线段的长度是.
(1)设点M的坐标是,P的坐标是,
因为点D是P在轴上投影,
M为PD上一点,且,所以,且,
∵P在圆上,∴,整理得,
即C的方程是.
(2)过点(3,0)且斜率为的直线方程是,
设此直线与C的交点为,,
将直线方程代入C的方程得:
,化简得,∴,,
所以线段AB的长度是
,即所截线段的长度是.
练习册系列答案
相关题目