题目内容
1.函数y=lg(cos2x)的定义域为{x|$kπ-\frac{π}{4}$<x<kπ+$\frac{π}{4}$,k∈Z}.分析 由cos2x>0,可得$2kπ-\frac{π}{2}$<2x<2kπ+$\frac{π}{2}$,解出即可得出.
解答 解:由cos2x>0,可得$2kπ-\frac{π}{2}$<2x<2kπ+$\frac{π}{2}$,解得$kπ-\frac{π}{4}$<x<kπ+$\frac{π}{4}$,k∈Z.
∴函数y=lg(cos2x)的定义域为{x|$kπ-\frac{π}{4}$<x<kπ+$\frac{π}{4}$,k∈Z}.
故答案为:{x|$kπ-\frac{π}{4}$<x<kπ+$\frac{π}{4}$,k∈Z}.
点评 本题考查了对数函数与三角函数的单调性,考查了推理能力与计算能力,属于中档题.
练习册系列答案
相关题目
12.已知三点A($\sqrt{3}+1$,1),B(1,1),C(1,2),则<$\overrightarrow{CA}$,$\overrightarrow{CB}$>=$\frac{π}{3}$.
6.把一颗骰子投掷两次,观察出现的点数,并记第一次出现的点数为a,第二次出现的点数为b,向量$\overrightarrow{m}$=(a,b),$\overrightarrow{n}$=(1,2),则向量$\overrightarrow{m}$与向量$\overrightarrow{n}$不共线的概率是( )
A. | $\frac{1}{6}$ | B. | $\frac{1}{12}$ | C. | $\frac{11}{12}$ | D. | $\frac{1}{18}$ |
10.已知θ∈R,且sinθ-2cosθ=$\sqrt{5}$,则tan2θ=( )
A. | $\frac{4}{3}$ | B. | $\frac{3}{4}$ | C. | -$\frac{3}{4}$ | D. | -$\frac{4}{3}$ |