题目内容
18.整数组(x1,x2,x3,x4)适合条件0<x1≤x2<x3≤x4<7,则这样的数组共有70组.分析 由题意得到xi∈{1,2,3,4,5,6},分了三类,没有相等的,有一组相等的,有两组相等的,根据分类计数原理可得.
解答 解:由xi∈N且0<x1≤x2<x3≤x4<7,
得xi为小于7的正整数,
∴xi∈{1,2,3,4,5,6}
又满足0<x1≤x2<x3≤x4<7的有序数组(x1,x2,x3,x4)的个数即从中取出四个数从小到大排列,
若没有相等的,故有C64=15,
若x1=x2=1,则有C52=10,
若x1=x2=2,则有C42=6,
若x1=x2=3,则有C32=3,
若x1=x2=4,则有C22=1,
则x1=x2时,共有10+6+3+1=20,
同理当x3=x4时,也有20,
当x1=x2且x3=x4时,有C62=15组,
根据分类计数原理,共有15+20+20+15=70组,
故答案为:70.
点评 本题考查对集合元素以及有序数对中顺序的理解和把握,在后面的排列组合知识考察中,要先取后排,而排列是从小到大的自然排列,所以本题重在理解,属于中档题.
练习册系列答案
相关题目
8.设正实数a,b满足a+2b=ab,则a+b的最小值为( )
A. | $\sqrt{2}$ | B. | 4$\sqrt{2}$ | C. | 3+2$\sqrt{2}$ | D. | 6 |
9.已知角α的终边上一点P(1,$\sqrt{3}$),则sinα=( )
A. | $\frac{\sqrt{3}}{2}$ | B. | $\frac{\sqrt{3}}{3}$ | C. | $\frac{1}{2}$ | D. | $\sqrt{3}$ |
11.已知$α∈({0,\frac{π}{4}})$,则下列不等式中正确的是 ( )
A. | sin(sinα)<sin(tanα)<sinα | B. | sin(sinα)<sinα<sin(tanα) | ||
C. | sin(tanα)<sinα<sin(sinα) | D. | sinα<sin(sinα)<sin(tanα) |
9.cos(-15°)的值为( )
A. | $\frac{{\sqrt{2}-\sqrt{6}}}{4}$ | B. | $\frac{{\sqrt{6}-\sqrt{2}}}{4}$ | C. | $\frac{{\sqrt{2}+\sqrt{6}}}{4}$ | D. | -$\frac{{\sqrt{2}+\sqrt{6}}}{4}$ |