题目内容
【题目】如图,四边形ABCD为正方形,QA⊥平面ABCD,PD∥QA,QA=AB=PD.
(1)证明:平面PQC⊥平面DCQ;
(2)求直线DQ与面PQC成角的正弦值
【答案】(1)见解析 (2)
【解析】
根据题意得以D为坐标原点,线段DA的长为单位长,射线DA,DP,DC分别为x,y,z轴建立空间直角坐标系D﹣xyz;(1)根据坐标系,求出的坐标,由向量积的运算易得=0, =0;进而可得PQ⊥DQ,PQ⊥DC,由面面垂直的判定方法,可得证明;(2)先求平面的PQC的法向量,再求出cos<,>,直线DQ与面PQC成角的正弦值等于cos<,>即可.
如图,以D为坐标原点,线段DA的长为单位长,射线DA,DP,DC分别为x,y,z轴建立空间直角坐标系D﹣xyz;
(1)依题意有Q(1,1,0),C(0,0,1),P(0,2,0),D(0,0,0);
则=(1,1,0),=(0,0,1),=(1,﹣1,0),
所以=0,=0;即PQ⊥DQ,PQ⊥DC,故PQ⊥平面DCQ,
又PQ平面PQC,所以平面PQC⊥平面DCQ;
(2)依题意,=(1,﹣1,0),
设=(x,y,z)是平面的PQC法向量,
则 即 ,可取=(1,1,2);
=(1,1,0),所以cos<,>=
设直线DQ与面PQC所成的角为 ,
sin =cos<,>=.
【题目】党的十八大将生态文明建设纳入中国特色社会主义事业“五位一体”总体布局,“美丽中国”成为中华民族追求的新目标.十九大报告中多次出现的“绿色”“低碳”“节约”等词语,正在走入百姓生活,城市出行的新变革正在悄然发生,绿色出行的理念已深入人心,建设美丽中国,绿色出行至关重要,骑自行车或步行渐渐成为市民的一种出行习惯.某市环保机构随机抽查统计了该市部分成年市民某月骑车次数,统计如下:
次数 年龄 | ||||||
18岁至31岁 | 8 | 12 | 20 | 60 | 140 | 150 |
32岁至44岁 | 12 | 28 | 20 | 140 | 60 | 150 |
45岁至59岁 | 25 | 50 | 80 | 100 | 225 | 450 |
60岁及以上 | 25 | 10 | 10 | 19 | 4 | 2 |
联合国世界卫生组织于2013年确定新的年龄分段:44岁及以下为青年人,45岁至59岁为中年人,60岁及以上为老人.
(1)若从被抽查的该月骑车次数在的老年人中随机选出两名幸运者给予奖励,求其中一名幸运者该月骑车次数在之间,另一名幸运者该月骑车次数在之间的概率;
(2)用样本估计总体的思想,解决如下问题:
①估计该市在32岁至44岁年龄段的一个青年人每月骑车的平均次数;
②若月骑车次数不少于30次者称为“骑行爱好者”,根据这些数据,统计并完成下表,说明能否在犯错误的概率不超过0.001的前提下认为“骑行爱好者”与“青年人”有关?
青年人 | 非青年人 | 合计 | |
骑行爱好者 | |||
非骑行爱好者 | |||
合计 |
0.10 | 0.05 | 0.025 | 0.10 | 0.005 | 0.001 | |
2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
参数数据:
(其中)