题目内容

18.设$f(x)=\frac{4^x}{{{4^x}+2}}$,若0<a<1,则f(a)+f(1-a)=1,$f(\frac{1}{2015})+f(\frac{2}{2015})+f(\frac{3}{2015})+…+f(\frac{2014}{2015})$=1007.

分析 由已知中$f(x)=\frac{4^x}{{{4^x}+2}}$,可得当0<a<1时,f(a)+f(1-a)=1,进而得到$f(\frac{1}{2015})+f(\frac{2}{2015})+f(\frac{3}{2015})+…+f(\frac{2014}{2015})$的值.

解答 解:∵$f(x)=\frac{4^x}{{{4^x}+2}}$,
∴当0<a<1时,
f(a)+f(1-a)=$\frac{{4}^{a}}{{4}^{a}+2}$+$\frac{{4}^{1-a}}{{4}^{1-a}+2}$=$\frac{{4}^{a}}{{4}^{a}+2}$+$\frac{{4}^{1-a}•{2}^{2a-1}}{{(4}^{1-a}+2)•{2}^{2a-1}}$=$\frac{{4}^{a}}{{4}^{a}+2}$+$\frac{{2}^{\;}}{{4}^{a}+2}$=1,
故$f(\frac{1}{2015})+f(\frac{2}{2015})+f(\frac{3}{2015})+…+f(\frac{2014}{2015})$=1007×1=1007,
故答案为:1,1007.

点评 本题考查的知识点是函数求值,指数的运算性质,其中根据已知中的函数解析式,求出当0<a<1时,f(a)+f(1-a)=1,是解答的关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网