题目内容
【题目】某品牌手机厂商推出新款的旗舰机型,并在某地区跟踪调查得到这款手机上市时间(x个月)和市场占有率(y%)的几组相关对应数据:
x | 1 | 2 | 3 | 4 | 5 |
y | 0.02 | 0.05 | 0.1 | 0.15 | 0.18 |
(1)根据上表中的数据,用最小二乘法求出y关于x的线性回归方程;
(2)根据上述回归方程,分析该款旗舰机型市场占有率的变化趋势,并预测自上市起经过多少个月,该款旗舰机型市场占有率能超过0.5%(精确到月).
附: , .
【答案】(1) =0.042x-0.026. (2) 预计上市13个月时,该款旗舰机型市场占有率能超过0.5%.
【解析】试题分析:(1)根据表中数据,计算, 与写出线性回归方程;
(2)根据回归方程得出上市时间与市场占有率的关系,列出不等式求出解集即可预测结果.
试题解析:
(1)由题意知=3,=0.1, iyi=1.92,
=55,
所以===0.042,
=-=0.1-0.042×3=-0.026,
所以线性回归方程为=0.042x-0.026.
(2)由(1)中的回归方程可知,上市时间与市场占有率正相关,
即上市时间每增加1个月,市场占有率约增加0.042个百分点.
由=0.042x-0.026>0.5,解得x≥13,
故预计上市13个月时,该款旗舰机型市场占有率能超过0.5%.
练习册系列答案
相关题目
【题目】为了解某地区某种农产品的年产量(单位:吨)对价格(单位:千元/吨)和利润的影响,对近五年该农产品的年产量和价格统计如表:
1 | 2 | 3 | 4 | 5 | |
7.0 | 6.5 | 5.5 | 3.8 | 2.2 |
(Ⅰ)求关于的线性回归方程 ;
(Ⅱ)若每吨该农产品的成本为2千元,假设该农产品可全部卖出,预测当年产量为多少时,年利润取到最大值?(保留两位小数)
参考公式:,