题目内容

17.已知函数f(x)=lnx+(x-b)2(b∈R)在区间$[{\frac{1}{2},2}]$上存在单调递增区间,则实数b的取值范围是(  )
A.$({-∞,\frac{3}{2}})$B.$({-∞,\frac{9}{4}})$C.(-∞,3)D.$({-∞,\sqrt{2}})$

分析 利用导函数得到不等式恒成立,然后求解b的范围.

解答 解:∵函数f(x)在区间$[{\frac{1}{2},2}]$上存在单调增区间,
∴函数f(x)在区间$[{\frac{1}{2},2}]$上存在子区间使得不等式f′(x)>0成立.
$f'(x)=\frac{1}{x}+2({x-b})=\frac{{2{x^2}-2bx+1}}{x}$,
设h(x)=2x2-2bx+1,则h(2)>0或$h({\frac{1}{2}})>0$,
即8-4b+1>0或$\frac{1}{2}-b+1>0$,
得$b<\frac{9}{4}$.
故选:B.

点评 本题考查函数的导数的综合应用,不等式的解法,考查计算能力.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网