题目内容
如图,在△ABC,AB=AC,以AB为直径的⊙O分别交AC、BC于点D、E,点F在AC的延长线上,且.
(1)求证:直线BF是⊙O的切线;
(2)若AB=5,,求BC和BF的长.
(1)求证:直线BF是⊙O的切线;
(2)若AB=5,,求BC和BF的长.
(1)见解析;(2)BC=2,BF=
1)由已知条件可判定直线BF与⊙O相切
(2)在Rt△ANB中,利用边角关系求出BE的长,进而求出BC所以△AGC∽△FBA,利用对应边的比值相等求出PC,在利用勾股定理求出AE,则可求出.
证明:(1)证明:连结AE.
∵AB是⊙O的直径,
∴∠AEB=90°.
∴∠1=∠2=90°.
∵AB=AC
∴∠1=∠CAB.
∴∠CBF=∠CAB,
∴∠1=∠CBF
∴∠CBF+∠2=90°.
即∠ABF=90°
∵AB是⊙O的直径,
∴直线BF是⊙O的切线.
(2)解:过点C作CG⊥AB于点G.
∵sin∠CBF=,∠1=∠CBF,
∴sin∠1=
∵∠AEB=90°,AB=5,
∴BE=AB·sin∠1=
∵AB=AC,∠AEB=90°,
∴BC=2BE=2
在Rt△ABE中,由勾股定理AE==2
∴sin∠2=,cos∠2=.
在Rt△CBG中,可求得GC=4,GB=2,
∴AG=3.
∵GC∥BF
∴△AGC∽△ABF.
∴BF=
(2)在Rt△ANB中,利用边角关系求出BE的长,进而求出BC所以△AGC∽△FBA,利用对应边的比值相等求出PC,在利用勾股定理求出AE,则可求出.
证明:(1)证明:连结AE.
∵AB是⊙O的直径,
∴∠AEB=90°.
∴∠1=∠2=90°.
∵AB=AC
∴∠1=∠CAB.
∴∠CBF=∠CAB,
∴∠1=∠CBF
∴∠CBF+∠2=90°.
即∠ABF=90°
∵AB是⊙O的直径,
∴直线BF是⊙O的切线.
(2)解:过点C作CG⊥AB于点G.
∵sin∠CBF=,∠1=∠CBF,
∴sin∠1=
∵∠AEB=90°,AB=5,
∴BE=AB·sin∠1=
∵AB=AC,∠AEB=90°,
∴BC=2BE=2
在Rt△ABE中,由勾股定理AE==2
∴sin∠2=,cos∠2=.
在Rt△CBG中,可求得GC=4,GB=2,
∴AG=3.
∵GC∥BF
∴△AGC∽△ABF.
∴BF=
练习册系列答案
相关题目