题目内容
如图,在△ABC,AB=AC,以AB为直径的⊙O分别交AC、BC于点D、E,点F在AC的延长线上,且
.
(1)求证:直线BF是⊙O的切线;
(2)若AB=5,
,求BC和BF的长.![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232245244094379.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823224524269860.png)
(1)求证:直线BF是⊙O的切线;
(2)若AB=5,
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823224524378847.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232245244094379.png)
(1)见解析;(2)BC=2
,BF=![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823224524440462.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823224524425322.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823224524440462.png)
1)由已知条件
可判定直线BF与⊙O相切
(2)在Rt△ANB中,利用边角关系求出BE的长,进而求出BC所以△AGC∽△FBA,利用对应边的比值相等求出PC,在利用勾股定理求出AE,则可求出.
证明:(1)证明:连结AE.
∵AB是⊙O的直径,
∴∠AEB=90°.
∴∠1=∠2=90°.
∵AB=AC
∴∠1=
∠CAB.
∴∠CBF=
∠CAB,
∴∠1=∠CBF
∴∠CBF+∠2=90°.
即∠ABF=90°
∵AB是⊙O的直径,
∴直线BF是⊙O的切线.
(2)解:过点C作CG⊥AB于点G.
∵sin∠CBF=
,∠1=∠CBF,
∴sin∠1=![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823224524518386.png)
∵∠AEB=90°,AB=5,
∴BE=AB·sin∠1=![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823224524425322.png)
∵AB=AC,∠AEB=90°,
∴BC=2BE=2![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823224524425322.png)
在Rt△ABE中,由勾股定理AE=
=2![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823224524425322.png)
∴sin∠2=
,cos∠2=
.
在Rt△CBG中,可求得GC=4,GB=2,
∴AG=3.
∵GC∥BF
∴△AGC∽△ABF.
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823224524674817.png)
∴BF=![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823224524440462.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823224524269860.png)
(2)在Rt△ANB中,利用边角关系求出BE的长,进而求出BC所以△AGC∽△FBA,利用对应边的比值相等求出PC,在利用勾股定理求出AE,则可求出.
证明:(1)证明:连结AE.
∵AB是⊙O的直径,
∴∠AEB=90°.
∴∠1=∠2=90°.
∵AB=AC
∴∠1=
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823224524487339.png)
∴∠CBF=
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823224524487339.png)
∴∠1=∠CBF
∴∠CBF+∠2=90°.
即∠ABF=90°
∵AB是⊙O的直径,
∴直线BF是⊙O的切线.
(2)解:过点C作CG⊥AB于点G.
∵sin∠CBF=
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823224524518386.png)
∴sin∠1=
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823224524518386.png)
∵∠AEB=90°,AB=5,
∴BE=AB·sin∠1=
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823224524425322.png)
∵AB=AC,∠AEB=90°,
∴BC=2BE=2
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823224524425322.png)
在Rt△ABE中,由勾股定理AE=
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823224524596661.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823224524425322.png)
∴sin∠2=
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823224524643485.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823224524518386.png)
在Rt△CBG中,可求得GC=4,GB=2,
∴AG=3.
∵GC∥BF
∴△AGC∽△ABF.
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823224524674817.png)
∴BF=
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823224524440462.png)
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目