题目内容
【题目】设集合A={x|4x﹣1|<9,x∈R},B={x| ≥0,x∈R},则(RA)∩B=( )
A.(﹣∞,﹣3)∪[ ,+∞)
B.(﹣3,﹣2]∪[0, )??
C.(﹣∞,﹣3]∪[ ,+∞)
D.(﹣3,﹣2]
【答案】A
【解析】解:集合A={x|4x﹣1|<9,x∈R}={x|﹣9<4x﹣1<9,x∈R}
={x|﹣2<x< ,x∈R},
B={x| ≥0,x∈R}
={x|x<﹣3或x≥0,x∈R},
∴RA={x|x≤﹣2或x≥ ,x∈R},
∴(RA)∩B={x|x<﹣3或x≥ ,x∈R}
=(﹣∞,﹣3)∪[ ,+∞).
故选:A.
【考点精析】掌握交、并、补集的混合运算是解答本题的根本,需要知道求集合的并、交、补是集合间的基本运算,运算结果仍然还是集合,区分交集与并集的关键是“且”与“或”,在处理有关交集与并集的问题时,常常从这两个字眼出发去揭示、挖掘题设条件,结合Venn图或数轴进而用集合语言表达,增强数形结合的思想方法.
练习册系列答案
相关题目