题目内容

5.在△ABC中,已知sinA=2sinB•cosC,且(a+b+c)(b+c-a)=3bc,则△ABC为(  )
A.等边三角形B.钝角三角形C.直角三角形D.等腰直角三角形

分析 第一个等式变形后,利用余弦定理求出cosA的值,进而求出A的度数,第二个等式化简,利用两角和与差的正弦函数公式变形,得到B=C,即确定出三角形形状.

解答 解:将(a+b+c)(b+c-a)=3bc,
整理得:(b+c)2-a2=3bc,即a2=b2+c2-bc,
由余弦定理得:cosA=$\frac{1}{2}$,
∵A为三角形内角,
∴A=$\frac{π}{3}$,
∵sinA=2sinBcosC,且sinA=sin(B+C)=sinBcosC+cosBsinC,
∴sinBcosC-cosBsinC=sin(B-C)=0,
∴B-C=0,即B=C,
∵B+C=$\frac{2π}{3}$,
∴A=B=C=$\frac{π}{3}$,
则△ABC为等边三角形.
故选:A.

点评 此题考查了正弦、余弦定理,两角和与差的正弦函数公式,熟练掌握定理是解本题的关键,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网