题目内容

【题目】在平面直角坐标系中,直线截以坐标原点为圆心的圆所得的弦长为.

(1)求圆的方程;

(2)若直线与圆切于第一象限,且与坐标轴交于点,当时,求直线的方程;

(3)设是圆上任意两点,点关于轴的对称点为,若直线分别交轴于点,问是否为定值?若是,请求出该定值;若不是,请说明理由.

【答案】(1);(2);(3)见解析

【解析】

(1)利用点到直线距离公式,可以求出弦心距,根据垂径定理结合勾股定理,可以求出圆的半径,进而可以求出圆的方程;

(2)设出直线的截距式方程,利用圆的切线性质,得到一个方程,结合已知,又得到一个方程,两个方程联立,解方程组,即可求出直线直线的方程;

(3)设,则,分别求出直线轴交点坐标、直线轴交点坐标,求出的表达式,通过计算可得.

(1)因为点到直线的距离为

所以圆的半径为

故圆的方程为.

(2)设直线的方程为,即

由直线与圆相切,得,①

.②

由①②解得

此时直线的方程为.

(3)设,则

直线轴交点坐标为

直线轴交点坐标为

,为定值2.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网