题目内容
【题目】如图,在三棱柱中,四边形,均为正方形,且,M为的中点,N为的中点.
(1)求证:平面ABC;
(2)求二面角的正弦值;
(3)设P是棱上一点,若直线PM与平面所成角的正弦值为,求的值
【答案】(1)证明过程见详解;(2);(3).
【解析】
(1)先取中点为,连接,,根据面面平行的判定定理,得到平面平面,进而可得平面ABC;
(2)先由题意,得到,,两两垂直,以为坐标原点,分别以,,为轴,轴,轴建立空间直角坐标系,设边长为,分别求出平面和平面的一个法向量,根据向量夹角公式,求解,即可得出结果;
(3)先设,得到,根据空间向量的夹角公式,列出等式求解,即可得出结果.
(1)取中点为,连接,,
因为为的中点,为的中点,
所以,,
又平面,平面,,
所以平面平面,
又平面,
所以平面ABC;
(2)因为四边形,均为正方形,所以,,两两垂直,
以为坐标原点,分别以,,为轴,轴,轴建立如图所示的空间直角坐标系,设边长为,则,,,,,
所以,,
因此,,,
设平面的一个法向量为,
则,所以,令,则,
因此;
设平面的一个法向量为,
则,所以,令,则,
因此,
设二面角的大小为,
则,
所以;
(3)因为是棱上一点,设,则,
所以,
由(2)知,平面的一个法向量为,
又直线与平面所成角的正弦值为,记直线与平面所成角为
则有,
整理得,解得或(舍)
所以.
【题目】随着经济的不断发展和人们消费观念的不断提升,越来越多的人日益喜爱旅游观光.某人想在2019年5月到某景区旅游观光,为了避开旅游高峰拥挤,方便出行,他收集了最近5个月该景区的观光人数数据见下表:
月份 | 2018.12 | 2019.1 | 2019.2 | 2019.3 | 2019.4 |
月份编号 | 1 | 2 | 3 | 4 | 5 |
旅游观光人数(百万人) | 0.5 | 0.6 | 1 | 1.4 | 1.7 |
(1)由收集数据的散点图发现,可用线性回归模型拟合旅游观光人数少(百万人)与月份编号之间的相关关系,请用最小二乘法求关于的线性回归方程,并预测2019年5月景区的旅游观光人数.
(2)当地旅游局为了预测景区给当地的财政带来的收入状况,从2019年4月的旅游观光人群中随机抽取了200人,并对他们旅游观光过程中的开支情况进行了调查,得到如下频率分布表:
开支金额(千元) | |||||||
频数 | 10 | 30 | 40 | 60 | 30 | 20 | 10 |
若采用分层抽样的方法从开支金额低于4千元的游客中抽取8人,再在这8人中抽取3人,记这3人中开支金额低于3千元的人数为,求的分布列和数学期望.
(参考公式:,其中,.)
【题目】2020年春节期间,全国人民都在抗击“新型冠状病毒肺炎”的斗争中.当时武汉多家医院的医用防护物资库存不足,某医院甚至面临断货危机,南昌某生产商现有一批库存的医用防护物资,得知消息后,立即决定无偿捐赠这批医用防护物资,需要用A、B两辆汽车把物资从南昌紧急运至武汉.已知从南昌到武汉有两条合适路线选择,且选择两条路线所用的时间互不影响.据调查统计2000辆汽车,通过这两条路线从南昌到武汉所用时间的频数分布表如下:
所用的时间(单位:小时) | ||||
路线1的频数 | 200 | 400 | 200 | 200 |
路线2的频数 | 100 | 400 | 400 | 100 |
假设汽车A只能在约定交货时间的前5小时出发,汽车B只能在约定交货时间的前6小时出发(将频率视为概率).为最大可能在约定时间送达这批物资,来确定这两车的路线.
(1)汽车A和汽车B应如何选择各自的路线.
(2)若路线1、路线2的“一次性费用”分别为3.2万元、1.6万元,且每车医用物资生产成本为40万元(其他费用忽略不计),以上费用均由生产商承担,作为援助金额的一部分.根据这两辆车到达时间分别计分,具体规则如下(已知两辆车到达时间相互独立,互不影响):
到达时间与约定时间的差x(单位:小时) | |||
该车得分 | 0 | 1 | 2 |
生产商准备根据运输车得分情况给出现金排款,两车得分和为0,捐款40万元,两车得分和每增加1分,捐款增加20万元,若汽车A、B用(1)中所选的路线运输物资,记该生产商在此次援助活动中援助总额为Y(万元),求随机变量Y的期望值,(援助总额一次性费用生产成本现金捐款总额)