题目内容

【题目】长方体ABCD﹣A1B1C1D1中,底面ABCD是正方形,AA1=2,AB=1,E是DD1上的一点.
(1)求异面直线AC与B1D所成的角;
(2)若B1D⊥平面ACE,求三棱锥A﹣CDE的体积.

【答案】
(1)解:以D为原点,DA、DC、DD1所在直线分别为x轴、y轴、z轴建立空间直角坐标系.

依题意,D(0,0,0),A(1,0,0),C(0,1,0),B1(1,1,2),

∴异面直线AC与B1D所成的角为


(2)解:设E(0,0,a),则

∵B1D⊥平面ACE,AE平面ACE,∴B1D⊥AE.

,∴﹣1+2a=0,

∴VACDE=VEADC= =


【解析】(1)建立如图所示的空间直角坐标系,利用异面直线的方向向量的夹角即可得到此两条异面直线所成的角;(2)利用线面垂直的性质定理即可得到点E的坐标,利用VACDE=VEADC即可得到体积.
【考点精析】掌握异面直线及其所成的角是解答本题的根本,需要知道异面直线所成角的求法:1、平移法:在异面直线中的一条直线中选择一特殊点,作另一条的平行线;2、补形法:把空间图形补成熟悉的或完整的几何体,如正方体、平行六面体、长方体等,其目的在于容易发现两条异面直线间的关系.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网