题目内容

20.已知等差数列{an}的前n项和为Sn,a4=5,S5=20,则数列{$\frac{1}{{a}_{n}{a}_{n+1}}$}的前100项和为(  )
A.$\frac{99}{202}$B.$\frac{25}{51}$C.$\frac{100}{101}$D.$\frac{51}{101}$

分析 利用等差数列的通项公式及其前n项和公式可得an,再利用“裂项求和”即可得出.

解答 解:设等差数列{an}的公差为d,
∵a4=5,S5=20,
∴$\left\{\begin{array}{l}{{a}_{1}+3d=5}\\{5{a}_{1}+\frac{5×4}{2}•d=20}\end{array}\right.$,解得$\left\{\begin{array}{l}{{a}_{1}=2}\\{d=1}\end{array}\right.$.
∴an=2+(n-1)=n+1.
∴$\frac{1}{{a}_{n}{a}_{n+1}}$=$\frac{1}{(n+1)(n+2)}$=$\frac{1}{n+1}-\frac{1}{n+2}$.
∴数列{$\frac{1}{{a}_{n}{a}_{n+1}}$}的前100项和S100=$(\frac{1}{2}-\frac{1}{3})$+$(\frac{1}{3}-\frac{1}{4})$+…+$(\frac{1}{101}-\frac{1}{102})$
=$\frac{1}{2}-\frac{1}{102}$
=$\frac{25}{51}$.
故选:B.

点评 本题考查了等差数列的通项公式及其前n项和公式、“裂项求和”,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网