ÌâÄ¿ÄÚÈÝ
5£®Èçͼ£¬ÒÑÖªÈýÀâÖùABC-A1B1C1µÄ²àÀâÓëµ×Ãæ´¹Ö±£¬AA1=AB=AC=1£¬AB¡ÍAC£¬MÊÇCC1µÄÖе㣬NÊÇBCµÄÖе㣬µãPÔÚÖ±ÏßA1B1ÉÏ£¬ÇÒÂú×ã$\overrightarrow{{A}_{1}P}$=¦Ë$\overrightarrow{{A}_{1}{B}_{1}}$£®£¨1£©µ±¦Ë=1ʱ£¬ÇóÖ¤£ºÖ±ÏßPN¡ÍƽÃæAMN£»
£¨2£©ÈôƽÃæPMNÓëƽÃæAA1C1CËù³ÉµÄ¶þÃæ½ÇΪ45¡ã£¬ÊÔÈ·¶¨µãPµÄλÖã®
·ÖÎö £¨1£©Ö¤Ã÷£ºÈçͼËùʾ£¬½¨Á¢¿Õ¼äÖ±½Ç×ø±êϵ£®Ö»ÒªÖ¤Ã÷$\overrightarrow{PN}•\overrightarrow{AN}$=0£¬$\overrightarrow{PN}•\overrightarrow{AM}$=0£¬¼´¿ÉµÃ³öPN¡ÍAN£¬PN¡ÍAM£¬¼´¿ÉÖ¤Ã÷Ö±ÏßPN¡ÍƽÃæAMN£»
£¨2£©ÉèƽÃæPMNµÄÒ»¸ö·¨ÏòÁ¿Îª$\overrightarrow{m}$=£¨x£¬y£¬z£©£¬P£¨¦Ë£¬0£¬1£©£¬ÀûÓÃ$\left\{\begin{array}{l}{\overrightarrow{m}•\overrightarrow{NP}=0}\\{\overrightarrow{m}•\overrightarrow{MP}=0}\end{array}\right.$£¬¿ÉÈ¡$\overrightarrow{m}$=£¨3£¬2¦Ë+1£¬2-2¦Ë£©£®È¡Æ½ÃæµÄÒ»¸ö·¨ÏòÁ¿$\overrightarrow{n}$=$\overrightarrow{AB}$=£¨1£¬0£¬0£©£¬ÀûÓÃƽÃæPMNÓëƽÃæAA1C1CËù³ÉµÄ¶þÃæ½ÇΪ45¡ã£¬¿ÉµÃ$|cos£¼\overrightarrow{m}£¬\overrightarrow{n}£¾|$=$\frac{|\overrightarrow{m}•\overrightarrow{n}|}{|\overrightarrow{m}||\overrightarrow{n}|}$=$\frac{\sqrt{2}}{2}$£¬½â³ö¼´¿É£®
½â´ð £¨1£©Ö¤Ã÷£ºÈçͼËùʾ£¬½¨Á¢¿Õ¼äÖ±½Ç×ø±êϵ£®N$£¨\frac{1}{2}£¬\frac{1}{2}£¬0£©$£¬P£¨1£¬0£¬1£©£¬M$£¨0£¬1£¬\frac{1}{2}£©$£®
$\overrightarrow{PN}$=$£¨-\frac{1}{2}£¬\frac{1}{2}£¬-1£©$£¬
¡ß$\overrightarrow{PN}•\overrightarrow{AN}$=$-\frac{1}{4}+\frac{1}{4}$+0=0£¬$\overrightarrow{PN}•\overrightarrow{AM}$=0+$\frac{1}{2}$$-\frac{1}{2}$=0£¬
¡àPN¡ÍAN£¬PN¡ÍAM£¬ÓÖAM¡ÉAN=A£¬
¡àÖ±ÏßPN¡ÍƽÃæAMN£»
£¨2£©½â£ºÉèƽÃæPMNµÄÒ»¸ö·¨ÏòÁ¿Îª$\overrightarrow{m}$=£¨x£¬y£¬z£©£¬P£¨¦Ë£¬0£¬1£©£¬$\overrightarrow{MP}$=$£¨¦Ë£¬-1£¬\frac{1}{2}£©$£¬$\overrightarrow{NP}$=$£¨¦Ë-\frac{1}{2}£¬-\frac{1}{2}£¬1£©$£¬
¡ß$\left\{\begin{array}{l}{\overrightarrow{m}•\overrightarrow{NP}=0}\\{\overrightarrow{m}•\overrightarrow{MP}=0}\end{array}\right.$£¬¡à$\left\{\begin{array}{l}{£¨¦Ë-\frac{1}{2}£©x-\frac{1}{2}y+z=0}\\{¦Ëx-y+\frac{1}{2}z=0}\end{array}\right.$£¬
È¡$\overrightarrow{m}$=£¨3£¬2¦Ë+1£¬2-2¦Ë£©£®
ȡƽÃæµÄÒ»¸ö·¨ÏòÁ¿$\overrightarrow{n}$=$\overrightarrow{AB}$=£¨1£¬0£¬0£©£¬
¡ßƽÃæPMNÓëƽÃæAA1C1CËù³ÉµÄ¶þÃæ½ÇΪ45¡ã£¬
¡à$|cos£¼\overrightarrow{m}£¬\overrightarrow{n}£¾|$=$\frac{|\overrightarrow{m}•\overrightarrow{n}|}{|\overrightarrow{m}||\overrightarrow{n}|}$=$\frac{3}{\sqrt{9+£¨2¦Ë+1£©^{2}+4£¨1-¦Ë£©^{2}}}$=$\frac{\sqrt{2}}{2}$£¬
½âµÃ¦Ë=$-\frac{1}{2}$»ò¦Ë=1£®
¡àµãPB1A1µÄÑÓ³¤ÏßÉÏ£¬ÇÒ|A1P|=$\frac{1}{2}$£¬»òµãPÓëµãB1Öغϣ®
µãÆÀ ±¾Ì⿼²éÁËÀûÓ÷¨ÏòÁ¿µÄ¼Ð½ÇÇó¿Õ¼ä½Ç¡¢ÏßÃæ´¹Ö±µÄÅж¨ÓëÐÔÖʶ¨Àí£¬¿¼²éÁË¿Õ¼äÏëÏóÄÜÁ¦¡¢ÍÆÀíÄÜÁ¦Óë¼ÆËãÄÜÁ¦£¬ÊôÓÚÖеµÌ⣮
A£® | $\frac{¦Ð}{6}$ | B£® | $\frac{¦Ð}{2}$ | C£® | $\frac{7¦Ð}{6}$ | D£® | $\frac{¦Ð}{3}$ |
A£® | $\frac{99}{202}$ | B£® | $\frac{25}{51}$ | C£® | $\frac{100}{101}$ | D£® | $\frac{51}{101}$ |
A£® | 1 | B£® | -0.5 | C£® | 0 | D£® | 0.5 |
A£® | $\frac{{\sqrt{2}}}{2}$ | B£® | $\frac{1}{2}$ | C£® | $\frac{{\sqrt{3}}}{3}$ | D£® | $\frac{1}{3}$ |