题目内容

【题目】定义在R上的函数y=f(x)是减函数,且对任意的a∈R,都有f(﹣a)+f(a)=0,若x、y满足不等式f(x2﹣2x)+f(2y﹣y2)≤0,则当1≤x≤4时,x﹣3y的最大值为(
A.10
B.8
C.6
D.4

【答案】A
【解析】解:由于任意的a∈R都有f(﹣a)+f(a)=0,可知函数y=f(x)为奇函数,
由f(x2﹣2x)+f(2y﹣y2)≤0可得f(x2﹣2x)≤﹣f(2y﹣y2),
由函数为奇函数可得式f(x2﹣2x)≤f(﹣2y+y2),
∵函数y=f(x)为R上的减函数,
∴x2﹣2x≥﹣2y+y2 , 即x2﹣y2﹣2(x﹣y)≥0,
整理可得,(x+y﹣2)(x﹣y)≥0,
作出不等式组 所表示的平面区域即可行域如图所示的△ABC.

令Z=x﹣3y,则Z表示x﹣3y﹣z=0在y轴上的截距的相反数,
由图可知,当直线经过点C(4,﹣2)时Z最大,最大值为Z=4﹣3×(﹣2)=10;
故选:A.
【考点精析】关于本题考查的奇偶性与单调性的综合,需要了解奇函数在关于原点对称的区间上有相同的单调性;偶函数在关于原点对称的区间上有相反的单调性才能得出正确答案.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网